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Abstract. In [DR14], the authors define the Garrett-Rankin triple product p-adic L-
function and relate it to the image of certain diagonal cycles under the p-adic Abel-Jacobi
map. We introduce a new p-adic triple symbol based on this p-adic L-function and show
that it satisfies symmetry relations, when permuting the three inputted modular forms. We
also provide computational evidence confirming that it is indeed cyclic when the modular
forms have even weights, and provide counter-examples in the case containing odd weights.
To do so, we extend the algorithm provided in [Lau14] to allow for ordinary projections of
nearly overconvergent modular forms – not just overconvergent modular forms – as well as
certain projections over spaces of non-zero slope. Finally, a curious consequence of our work
is an efficient method to calculate certain Poincaré pairings in higher weight.
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1. Introduction

Let f, g, h be three cuspidal eigenforms over Q of weight 2, level N and trivial characters.
Fix a prime p ≥ 5 and assume that p6 |N . Let αf , βf be the roots of the Hecke polynomial

x2 − ap(f)x+ p.

Assume that the modular form f is regular at p, i.e. that αf and βf are different. Assume
as well that f is ordinary at p, i.e. that one of the roots of x2 − ap(f)x + p, say αf , is a
p-adic unit. Define the following two modular forms:

fα(q) := f(q)− βff(qp);

fβ(q) := f(q)− αff(qp).
(1)

We call fα and fβ the p-stabilizations of f . They have level pN , and are eigenforms for the
Up operator with respective eigenvalues αf and βf . Since we assumed that αf is a unit, it is
customary to call fα the ordinary p-stabilization of f . Define the following Euler factors:

E(f, g, h) := (1− βfαgαhp−2)(1− βfαgβhp−2)(1− βfβgαhp−2)(1− βfβgβhp−2);

Ẽ(f, g, h) := (1− αfαgαhp−2)(1− αfαgβhp−2)(1− αfβgαhp−2)(1− αfβgβhp−2);

E0(f) := 1− β2
f p
−1; Ẽ0(f) := 1− α2

f p
−1;

E1(f) := 1− β2
f p
−2; Ẽ1(f) := 1− α2

f p
−2.

(2)

Let λfγ be the projection over fγ; it is the unique Hecke-equivariant linear functional that
factors through the Hecke eigenspace associated to fγ and is normalized to send fγ to 1 (cf.

Definition 2.7 in [Loe18]). Let d := q d
dq

be the Serre differential operator and ωf := f(q)dq
q

the differential associated to f . Consider the quantity

〈ωf , φ(ωf )〉
p

(
E1(f)

E(f, g, h)
βf λfα

(
d−1(g[p])× h

)
+
Ẽ1(f)

Ẽ(f, g, h)
αf λfβ

(
d−1(g[p])× h

))
, (3)

where 〈·, ·〉 is the Poincaré pairing (cf. Theorem 5.2 of [Col95]) and φ is the Frobenius map.
It turns out that this quantity is independent – up to a sign – of the order of f, g and h. This
result is particularly surprising since the quantity in (3) does not appear to be symbolically
symmetric in f, g and h. This will fit into the framework of our paper, as we relate this
quantity to the image of certain diagonal cycles under the p-adic Abel-Jacobi map.

The above can even be generalized to modular forms of higher weight and any characters
satisfying χfχgχh = 1, which we will do in Section 4. In that case, one needs to adjust the
Euler factors from (2) and introduce an extra factor and some twists by χ−1

f in (3). One
would also require that the weights be balanced, i.e. that the largest one is strictly smaller
than the sum of the other two.

In order to explicitly calculate (3), for modular forms of general weight, we need certain
computational tools, namely being able to compute ordinary projections of nearly overcon-
vergent modular forms, as well as projection over the slope α subspace for α not necessarily
zero. In [Lau14] (see also [Lau11]), the author describes an algorithm allowing the calculation
of ordinary projections of overconvergent modular forms. We introduce here improvements
to this algorithm, allowing us to accomplish the aforementioned tasks. The use of this new
algorithm is not restricted to this paper. The experimental calculations detailed in Section



A SYMMETRIC p-ADIC SYMBOL FOR TRIPLES OF MODULAR FORMS 3

5, on the symmetry of (3), provide additional support to the fact that our algorithm is func-
tioning properly.

An additional application of our code is the calculation of certain periods of modular forms.
Indeed, using the symmetry of our new p-adic triple symbol, introduced in Section 4.2, we
explain how one can use our algorithms to compute the Poincaré pairing Ωf := 〈ωf , φ(ωf )〉,
where φ denotes the Frobenius action and f is a newform of any weight. See [DL21], [DLR16]
and Section III.5 of [Nik11] for instances where this pairing appears in the literature. There
are currently no known ways of evaluating general Poincaré pairings, and the value of Ωf has
so far only been computed in cases where f has weight 2 using Kedlaya’s algorithm [Ked01].

Roadmap. Our paper is structured as follows. In Section 2, we introduce the main theo-
retical notions used in this work. That is, the main results concerning overconvergent and
nearly overconvergent modular forms, the Katz basis, the Up operator, and finally Lauder’s
algorithm introduced in [Lau14] to compute ordinary projections of overconvergent modular
forms. In Section 3, we describe improvements to that algorithm. Firstly, we introduce an
overconvergent projector, and use it for the calculation of the ordinary projection of a nearly
overconvergent modular form. Secondly, we describe a method to compute the projection
of a nearly overconvergent modular form over the slope α subspace, where α is not neces-
sarily zero. Section 4 is dedicated to our new p-adic triple symbol. We first describe the
Garrett-Rankin triple product p-adic L-function defined in [DR14] and its relation to the
p-adic Abel-Jacobi map. We then use this relation to introduce a new p-adic triple symbol
(f, g, h)p. After that, we focus on studying the symmetry properties of (f, g, h)p when per-
muting f, g and h. Finally, in Section 5, we provide our experimental evidence and show
how to compute the Poincaré pairing 〈ωf , φ(ωf )〉, where φ denotes the Frobenius action and
f is a newform with rational coefficients of any weight.

Acknowledgements. I would like to thank my DPhil supervisor Alan Lauder for his help
and guidance over the past years. I am also very grateful to Henri Darmon, Adrian Iovita,
David Loeffler and Victor Rotger. Their ideas, advice and input to this article were extremely
helpful.

I would like to specifically thank David Loeffler for his ideas on overconvergent projections
and slope projections which are central to Section 3. I also particularly thank Victor Rotger
for his advice on Section 4.3. Furthermore, I am deeply indebted to Henri Darmon for
suggesting this project to me and giving generous help throughout this endeavour.

2. Background

2.1. Modular forms. Throughout this paper, we will mainly deal with overconvergent and
nearly overconvergent modular forms, a thorough account of which is given in [Kat73] (for
overconvergent forms) and [DR14] or [Urb14] (for their nearly-overconvergent counterpart).
In this section, we will review their computational aspects as well as the necessary results
that will be used in the rest of the paper.

Let B be a p-adic ring, i.e. a complete separated Zp-algebra with the p-adic topology, with

fraction field K. Denote by Mp-adic
k (B,Γ; r) the space of p-adic modular forms of weight k,

level Γ and growth condition r ∈ B. We might often drop the B when there is no possible
confusion. In the remaining sections, we will have B = Zp. In the case where r is not a
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unit, we say that we have an overconvergent modular form of weight k, level Γ and growth
condition r. We denote the space of such overconvergent modular forms by Moc

k (B,Γ; r).
The usual definitions of overconvergent modular forms, viewing them as functions on test

objects or as sections of certain line bundles (cf. [Gou88, Kat73]) are not very amenable to
computations, as they are quite abstract. An alternative way to work with such modular
forms is through the Katz basis, allowing us to express overconvergent modular forms as
series in classical objects.

First, assume that p ≥ 5 and does not divide N . Let Ep−1 denote the normalized Eisenstein
series of weight p− 1 (and level 1). We write Mk(B,N) to mean the space of modular forms
over B of weight k and level Γ1(N). Note that we have

Mk(B,N) = Mk(Zp, N)⊗Zp B.

The map

Mk+(i−1)(p−1)(B,N) ↪→Mk+i(p−1)(B,N)

f 7→ Ep−1 · f

is injective but not surjective for all i ≥ 1. It also has a finite free cokernel ([Kat73],
Lemma 2.6.1), so it must split. We can then, following Gouvêa’s notation in [Gou88], let
Ak+i(p−1)(B,N) be a free B-module such that

Mk+i(p−1)(B,N) = Ep−1 ·Mk+(i−1)(p−1)(B,N)⊕ Ak+i(p−1)(B,N).

For i = 0, let Ak(B,N) := Mk(B,N). We also have

Ak+i(p−1)(B,N) = Ak+i(p−1)(Zp, N)⊗Zp B.

We can think of Ak+i(p−1)(B,N) as the set of modular forms of weight k + i(p− 1) that do
not come from smaller weight forms multiplied by Ep−1. We notice that we can write

Mk+i(p−1)(B,N) =
i⊕

a=0

(Ep−1)i−a · Ak+a(p−1)(B,N).

We may now give an equivalent definition for the space of r-overconvergent modular forms.

Proposition 2.1. The space of overconvergent modular forms of weight k, growth condition
r and level Γ1(N) is given by

Moc
k (N ; r) =

{
∞∑
i=0

ri
bi

Ei
p−1

: bi ∈ Ak+i(p−1)(N), lim
i→∞

bi = 0

}
, (4)

where by limi→∞ bi = 0, we mean that the expansion of bi is more and more divisible by p as
i goes to infinity.

Remark 1. If we take r to be invertible in equation (4), we will just get Mp-adic
k (N ; r).

Moreover, we can also define overconvergent modular forms with a given character χ to be

Moc
k (N,χ; r) :=

{
∞∑
i=0

ri
bi

Ei
p−1

: bi ∈ Ak+i(p−1)(N,χ), lim
i→∞

bi = 0

}
,

where Ak+i(p−1)(N,χ) is define analogously to Ak+i(p−1)(N) by

Mk+i(p−1)(B,N, χ) = Ep−1 ·Mk+(i−1)(p−1)(B,N, χ)⊕ Ak+i(p−1)(B,N, χ).
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An expansion for f ∈ Mp-adic
k (B,N, χ; r) of the form f =

∑∞
i=0 r

i bi
Eip−1

is called a Katz

expansion.

Remark 2. Some authors (see [Urb14] for instance) use the notation Moc
k (B,N, χ;α) to

mean Moc
k (B,N, χ; pα). This is because the actual value of r is unimportant; only its p-adic

valuation matters. We will also use this notation, but from Section 2.3 onward.

We can also talk about the space of all overconvergent modular forms Moc
k (B,N, χ) with-

out specifying the growth condition,

Moc
k (B,N, χ) :=

⋃
r 6∈B×

Moc
k (B,N, χ; r).

If we were to include units in the above definition, we’d obtain the set of all p-adic modular
forms of level Γ1(N), weight k and any growth condition,

Mp-adic
k (B,N, χ) :=

⋃
r∈B

Mp-adic
k (B,N, χ; r).

If r = r0r1, we then have an inclusion

Mp-adic
k (B,N, χ; r) ↪→Mp-adic

k (B,N, χ; r0),
∞∑
i=0

ri
bi

Ei
p−1

7→
∞∑
i=0

ri0
(ri1bi)

Ei
p−1

.
(5)

In particular, letting r0 = 1, or any unit, we see that the space of p-adic modular forms of
growth condition 1 is equal to the space of p-adic modular forms of any growth condition,
i.e. Mp-adic

k (B,N, χ; 1) = Mp-adic
k (B,N, χ). We now introduce the Serre differential operator

q
d

dq
: Mp-adic

k (B,Γ1(N)) −→Mp-adic
k+2 (B,Γ1(N))∑

n

anq
n 7→

∑
n

nanq
n.

This operator does not necessarily preserve overconvergence in general. We do however,
have the following special case.

Theorem 2.2 (Theorem 2, [CGJ95]). Let k ≥ 1 and f ∈Moc
1−k(B,Γ1(N)). Then,

(
q d
dq

)k
f ∈

Moc
1+k(B,Γ1(N)).

We now discuss nearly overconvergent modular forms (see [DR14, Urb14] for more details).
Let Mn-oc

k (B,Γ; r; s) denote the space of nearly overconvergent modular form of weight k level
Γ, growth condition r ∈ B and order of near overconvergence less or equal to s ∈ Z≥0. When
s = 0, we retrieve the usual definition of overconvergent modular forms. We have inclusions

Moc
k (B,Γ1(N); r) ⊆Mn-oc

k (B,Γ1(N); r; s) ⊆Mp-adic
k (B,Γ1(N))

for all r and s. We now give some concrete characterizations of nearly overconvergent
modular forms using the Eisenstein series E2. Recall that E2 is transcendental over the ring
of overconvergent modular forms (cf. [CGJ95]), so

Moc
k (B,Γ)(E2) ∼= Moc

k (B,Γ)(X), (6)

where X is a free variable.
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Proposition 2.3 (Remark 3.2.2 in [Urb14]). Let f be a nearly overconvergent modular form
over B of weight k, level Γ1(N) and order less or equal to s. Then there exist overconvergent
modular forms g0, g1, ..., gs with gi ∈Moc

k−2i(B,Γ1(N)) such that

f = g0 + g1E2 + ...+ gsE
s
2. (7)

By Proposition 2.3 and Equation (6), nearly overconvergent modular forms are polynomi-
als in E2 with overconvergent modular forms as coefficients, so we can view them as elements
of Moc

k (B,Γ1(N))(X). Hence, on top of having a q-expansion in B[[q]] they also have a poly-
nomial q-expansion in B[[q]][X] (of degree less or equal to s, where s is the order of near
overconvergence) that comes from Equation (7). Consider the operator δk acting on nearly
overconvergent modular forms of weight k defined on polynomial q-expansions as

(δkf)(q,X) := q
d

dq
f + kXf(q).

Then δk sends modular forms of weight k to modular forms of weight k + 2. Define as well
the iterated derivate δsk := δk+2s−2 ◦ δk+2s−4 ◦ ... ◦ δk.

Proposition 2.4 (Lemma 3.3.4 in [Urb14]). Let f be a nearly overconvergent modular form
of weight k and order less or equal to s such that k > 2s. Then for each i = 0, ..., s, there
exists a unique overconvergent modular form hi of weight k − 2i such that

f =
s∑
i=0

δik−2i(hi).

Propositions 2.3 and 2.4 allow us to think about nearly overconvergent modular forms
as having an overconvergent component in them. We can hence define the overconvergent
projection of nearly overconvergent modular forms as

πoc

(
s∑
i=0

δik−2i(hi)

)
:= h0.

2.2. The Up operator. We now restrict our attention to the space Moc
k (Zp, N) of overcon-

vergent modular forms of level N and weight k. As in the above, we might drop the Zp in
the notation of Moc

k when the base field is obvious. Consider the Hecke, Atkin and Frobenius
operators Tp, Up and V acting on p-adic modular forms via

Tp :
∑
n

anq
n 7→

∑
n

apnq
n + χ(p) pk−1

∑
n

anq
pn,

Up :
∑
n

anq
n 7→

∑
n

apnq
n,

V :
∑
n

anq
n 7→

∑
n

anq
pn.

The Hecke operator Tp acts on modular forms of level N , for p6 |N . The Atkin operator
Up acts on modular forms of level N , for p|N . And lastly, the Frobenius operator V takes
modular forms of level N to forms of level pN .
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We notice that V is a right inverse for Up and that V Up (
∑

n anq
n) =

∑
p|n anq

n. In

particular, Up has no left inverse and we write, for a modular form f :=
∑

n anq
n,

UpV (f) = f, f [p] := (UpV − V Up)(f) =
∑
p6 |n

anq
n.

We call f [p] the p-depletion of f . We have the formula Up(V (f) · g) = f ·Up(g), for modular
forms f and g, which can be proven by looking at q-expansions. In particular, this says that
Up is multiplicative when one of its inputs is in the image of the Frobenius map V .

Define the p-adic Banach space Moc
k (K,N ; r) := Moc

k (B,N ; r)⊗B K, where the unit ball
is given by Moc

k (B,N ; r). Note that Up doesn’t necessarily preserve the growth conditions
of an overconvergent modular form. However, if we restrict our attention to the case 0 <
ordp(r) <

1
p+1

, we have an inclusion

p · Up : Moc
k (B,N ; r) ↪→Moc

k (B,N ; rp),

f 7→ p · Up(f).

as in Lemma 3.11.4 of [Kat73]. So Up (Moc
k (K,N ; r)) ⊆ 1

p
Moc

k (K,N ; rp). Combining this

with the fact that Moc
k (B,N ; rp) ⊆ Moc

k (B,N ; r) via the map in (5), we can view the
Atkin operator Up as an endomorphism of Moc

k (K,N ; r) when 0 < ordp(r) <
p
p+1

. This

endomorphism is completely continuous so we can apply p-adic spectral theory, as in [Ser62].
We therefore obtain that the Atkin operator Up will induce a decomposition (as in Section
2 of [Wan98]), for all α ∈ Q≥0 ∪ {∞}, on the space of overconvergent modular forms:

Moc
k (K,N ; r) = Moc

k (K,N ; r)slope α ⊕Xα, (8)

where Moc
k (K,N ; r)slope α is the finite dimensional space of overconvergent modular forms

in Moc
k (K,N ; r) of slope α. Recall that the slope α subspace is the generalized eigenspace

of Up whose eigenvalues have p-adic valuation α. A similar decomposition to Equation (8)
also holds for classical modular forms. If we further assume an infinite slope version of the
spectral expansion conjecture (cf. [GM95]), we would obtain

Moc
k (K,N ; r) =

⊕̂
α∈Q≥0∪{∞}

Moc
k (K,N ; r)slope α, (9)

for ordp(r) ∈
(

1
p+1

, p
p+1

)
, where ⊕̂ denotes the completed direct sum. Note that partial

results towards the spectral expansion conjecture have been obtained in [Loe07] when p = 2.
The overconvergent modular forms of slope zero are said to be ordinary and we denote this

space by Moc,ord
k (N). Actually, Coleman’s classicality theorem (cf. [Col95]) states that any

ordinary overconvergent modular form of weight k ≥ 2 can be seen as a classical modular
form of weight k on Γ1(N). Therefore, when k ≥ 2, we can simply denote the ordinary

overconvergent modular by Mord
k (N) instead of Moc,ord

k (N).
Hida’s ordinary projection operator eord := limUpn! acts on overconvergent modular forms

and projects the entire space Moc
k (N) onto its subspace of ordinary forms Moc, ord

k (N).
Finally, Equation (8) tells us that any overconvergent modular form φ has a component
φα in each given slope. This gives us a notion of slope projection eslope α(φ) := φα, with
eslope 0 = eord.

Consider now the space of nearly overconvergent modular forms. One can still define the
ordinary projection operator as eord := limUpn! , since this operator is actually defined for
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any p-adic modular form in general. It turns out that the ordinary projection of a nearly
overconvergent modular form only depends on its overconvergent part.

Theorem 2.5 (Lemma 2.7 in [DR14]). Let F be a nearly overconvergent modular form, then

eord(φ) = eordπoc(φ).

Thus, taking ordinary projections of nearly overconvergent modular forms reduces to tak-
ing ordinary projections of overconvergent modular forms.

As explained in Section 3.3.6 of [Urb14] (see also Appendix II of [AI21] for Urban’s er-
ratum to [Urb14]), the Atkin operator Up is also completely continuous when viewed as an
endomorphism of Mn-oc

k (K,N ; r; s), for 0 < ordp(r) <
1
p+1

. Hence, we obtain a decompo-

sition of Mn-oc
k (K,N ; r; s) similar to that of Equation (8). This means that we may also

similarly speak of slope α projections eslope α(ψ) for nearly overconvergent modular forms ψ.

2.3. Ordinary projections of overconvergent modular forms. As we are interested
in performing explicit computations in this paper, we will approximate our overconvergent
modular forms by truncated power series (i.e. polynomials) modulo pm, in Z[[q]]/(qh, pm)
for some m ∈ N and h = h(m,N, k, χ) ∈ N. Once we know what level of precision we want
to obtain after our calculations, we can decide what level of precision we need to start with,
as we know how much precision is lost through the algorithms that we use. An alternative
– more ad hoc – way to measure the precision of our outputs (p-adic numbers) is to run our
algorithm multiple times, to different precisions, and see by what power of p they differ.

We will explain how to write down the Katz expansion of an overconvergent modular form
H ∈ Moc

k (Zp, N, χ; 1
p+1

) as well as a matrix representing Up. More details can be found in

[Lau14]. Picking a row-reduced basis Bi for each Ak+i(p−1)(Zp, N), we obtain the sets:

Kb :=

{
pb

i
p+1c · b
Ei
p−1

mod (qh
′p, pm

′
) : b ∈ Bi, i = 1, ...,

⌊
(p+ 1)m

p− 1

⌋}
,

S :=

{
Up

(
pb

i
p+1c · b
Ei
p−1

)
mod (qh

′
, pm

′
) : b ∈ Bi, i = 1, ...,

⌊
(p+ 1)m

p− 1

⌋}
,

for an appropriate choice of h′ and m′ depending on m. We call Kb the Katz basis. Let d be
its size and write Kb = {v1, ..., vd}. Any overconvergent modular form of growth condition

1
p+1

, when reduced modulo (qh
′p, pm

′
), can be expressed as a linear combination in Kb.

Let E and T be the d×h′ matrices formed by taking the elements of Kb and S respectively
and looking at the first h′ terms in their q-expansions. Compute the d × d matrix A′ such
that T = A′E. Then, A := A′ mod pm is the representation of the operator Up in the Katz
basis. We write A = [Up]Kb.

The advantage of this approach is that we only need to compute Up once on the Katz basis
and then we will be able to apply the Atkin operator as many times as we wish without
having to actually use its original definition. Given an overconvergent modular form f of
growth condition p

p+1
, we can express it as a sum

f =
∑
i

αivi mod (qh
′p, pm

′
). (10)
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Write [f ]Kb := (α1, ..., αd) and compute A[f ]Kb. Letting γi denote the entries of [Up(f)]Kb,
we finally obtain

Up(f) =
∑
i

γivi mod (qh
′
, pm). (11)

Thus, we have [Up(f)]Kb = A[f ]Kb. For more details on the correctness Equation (11), see
Section 2.2.2 of [Lau14] and the last paragraph of Section 3.2.1 in [Lau11].

Remark 3. Note that we let the overconvergent modular form f in Equation (10) have
growth rate p

p+1
instead of just 1

p+1
. Although we can write an 1

p+1
-overconvergent modular

form φ in the Katz basis, and A = [Up]Kb in the same basis, we cannot directly apply A
to [φ]Kb, as explained in [Lau14]. Indeed, the coefficients in the expansion of [φ]Kb will not
decay fast enough (p-adically) for our calculations to be accurate and for Equation (11)
to hold. This issue is entirely avoided when φ is p

p+1
-overconvergent. Thus, when dealing

with a 1
p+1

-overconvergent form φ, we have to compute Up(φ) directly (without using the

matrix representation A of Up) to obtain a p
p+1

-overconvergent form, thus improving its

overconvergence and decay properties. After that, we may apply A to [Up(φ)]Kb.

To compute ordinary projections eord := limUpn! of overconvergent modular forms, we
pick a big enough R ∈ N (cf. Algorithm 2.1 in [Lau14]) such that AR represents eord to our
desired level of precision. Given an overconvergent modular form f of growth condition p

p+1
,

written as
∑

i αivi modulo (qh
′
, pn), we compute γ := AR[f ]Kb and let γi denote the entries

of γ. Finally, we obtain

eord(f) =
∑
i

γivi mod (qh
′
, pn).

3. Algorithmic methods

3.1. Ordinary projections of nearly overconvergent modular forms. For simplicity,
let d denote the Serre operator q d

dq
. Let g, h be two classical modular forms of weights `,m

respectively, and let H := d−(1+t)(g[p]) × h, for some integer t with 0 ≤ t ≤ min{`,m} − 2.
We wish to compute

X := eord(H) = eord

(
d−(1+t)(g[p])× h

)
.

The modular form d−(1+t)(g[p]) has weight `− 2(1 + t), hence X has weight `+m− 2t− 2.
The condition 0 ≤ t ≤ min{`,m} − 2 ensures that X , g and h are balanced, i.e. the largest
weight is strictly smaller than the sum of the other two. If we had that t = `− 2, the form
H := d−(1+t)(g[p]) × h would have been overconvergent. This is because Theorem 2.2 still
applies for negative powers of d, after depleting the modular form to avoid dividing by p,
i.e. we have a map

Moc
1+a(B,Γ1(N)) −→Moc

1−a(B,Γ1(N))

g 7→ d−ag[p] =
∑
p6 |n

an(g)

na
qn, (12)

for all a ≥ 1. So, in our case, H is not necessarily overconvergent and we cannot directly use
the methods introduced in [Lau14] to compute the ordinary projection eord(H). However, H
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is nearly overconvergent (Proposition 2.9 in [DR14]) and Theorem 2.5 tells us that

eord(H) = eord (πoc(H)) = eord

(
πoc

(
d−(1+t)(g[p])× h

))
,

where πoc is the overconvergent projection operator. Since πoc(H) is overconvergent, by
definition, we can follow the methods described in [Lau14] to compute its ordinary projec-
tion, thus obtaining eord (πoc(H)) = eord(H). We therefore turn our attention to computing
πoc(H). Note that we are not actually interested in taking the overconvergent projection of

any nearly overconvergent modular form; we are specifically computing πoc(d
−(1+m)(g[p])×h).

We therefore use a trick (see Theorem 3.1), that specifically applies to our setting.

Set G := d1−`g[p], it is an overconvergent modular form of weight 2−`, as in Equation (12).
Let n = ` − 2 − t ≥ 0 so that d−1−tg[p] = dnG and πoc

(
d−1−t(g[p])× h

)
= πoc((d

nG) × h).
Consider the Rankin-Cohen bracket

[G, h]n =
∑

a,b≥0,a+b=n

(−1)b
(

(2− `) + n− 1

b

)(
m+ n− 1

a

)
da(G)db(h). (13)

Note that the individual terms in this sum are all p-adic modular forms of weight `+m−2t−2
that are not necessarily overconvergent. However, the entire sum [G, h]n is overconvergent. It
turns out that the Rankin-Cohen bracket is closely related to the overconvergent projection
operator.

Theorem 3.1. Let φ1, φ2 be overconvergent modular forms of weights κ1 and κ2 respectively,
then, for all s ≥ 0,

[φ1, φ2]s =

(
κ1 + κ2 + 2s− 2

s

)
πoc((dsφ1)× φ2).

This follows from Section 4.4 of [LSZ20] (see also Theorem 1 in [Lan08]). We thus obtain
the following Corollary.

Corollary 3.2. We can relate [G, h]n and πoc((dnG)× h) as follows

[G, h]n =

(
−`+m+ 2n

n

)
πoc((dnG)× h).

Thus, we can simply compute [G, h]n using Equation (13) to obtain πoc(H).

Remark 4. Note that we had to pass through G instead of using g directly as we cannot have
the subscript s of the Rankin-Cohen bracket [·, ·]s be negative. Moreover, since the modular
forms X , g, h are balanced,

(−`+m+2n
n

)
cannot be zero.

3.2. Eigenspace σ projections. In the previous sections, we have seen how to compute
ordinary projections, i.e. projections over the space of overconvergent modular forms of slope
zero. We now consider taking more general projections

For all α ∈ Q∪{∞}, the Up equivariant decomposition of Moc
k (N), described in Equation

(8), allows us to express any form H as a sum H = Fα + F , where Fα ∈ Moc
k (N)slope α and

F ∈ Xα. We call Fα the projection of H onto the space of slope α, or the slope α projection
of H. Consider now the eigenspace associated to a single eigenvalue σ such that valp(σ) = α.
We will explain how to project modular forms onto such an eigenspace. This method has
been used in [DL21] and is based on an insight of David Loeffler (see the last paragraph of
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Section 6.3 of [LSZ20]). We call such a projection the eigenspace σ projection. This can be
seen as a special case of the slope α projection, as these two notions would agree in the case
where Up only has one eigenvalue σ of valuation α.

Let A denote the matrix computed in Section 2.3, representing the Up operator acting on
the Katz basis of Moc

k (Zp, N, χ; 1
p+1

). Let σ be an eigenvalue for Up and let M = Mσ :=

A− σId. Put Mσ in Smith normal form, i.e. let P and Q be invertible matrices such that

QMσP = D = diag (a1(σ), ..., as−1(σ), as(σ)) ,

where a1(σ)|a2(σ)|...|as(σ). We now remark that as(σ) should be zero, as σ is an eigenvalue
for Up. However, A is only an approximation for Up. More precisely, A ∈ Md×d(Z/pmZ)
is equal to Up modulo pm. And so, as(σ) will only be zero in Z/pmZ. Moreover, the case
as−1(σ) = 0 happens precisely when σ has multiplicity (as an eigenvalue of Up) more than
one. Assume henceforth that we are dealing with an eigenvalue σ of multiplicity one, i.e.
that the σ-eigenspace is one-dimensional.

From now on, we will assume the spectral expansion formula given by Equation (9). The
spectral expansion conjecture [GM95] is widely believed to be true and has been proven
in the case where p = 2, N = 1 and 5/12 < r < 7/12 (cf. [Loe07]). Our algorithm for
eigenspace σ projections will thus work under the assumption that this conjecture holds.

Let fσ be an eigenform lying in the one-dimensional σ-eigenspace. Let π := πσ denote the
last row of Q ∈ Md×d(Z/pmZ), i.e. πi = Qi,d for i = 1, ..., d. We call π the projector to fσ.
The reason for this will become clear in the following.

Proposition 3.3. The projector πσ is orthogonal to all p/(p + 1)-overconvergent modular
forms (written in the Katz basis) not in the σ-eigenspace.

Proof. As we are working with p/(p + 1)-overconvergent modular forms, we will be able to
represent the action of Up on them by the matrix A given in Section 2.3. We start with
the simplest case. Let fs be an eigenform of Up with eigenvalue s, such that s 6= σ. Then,
M [fs]Kb = (A− σId)[fs]Kb = (s− σ)[fs]Kb. Hence,

Q(s− σ)[fs]Kb = QM [fs]Kb = DP−1[fs]Kb. (14)

Since π is the last row of Q and the last row of D is completely zero, Equation (14) gives

(s− σ)π[fs]Kb = π(s− σ)[fs]Kb = 0. (15)

As s 6= σ, we must have π[fs]Kb = 0, up to a certain level of precision, as is explained in
Remark 5. This shows that any eigenform of Up, with eigenvalue of different norm than the
norm of σ, is orthogonal to π.

A similar argument applies to generalized eigenform. Let Fs be a generalized eigenform
for the eigenvalue s, again with s 6= σ. There exists some minimal integer r ∈ N such that
(A− sId)r[Fs]Kb = 0. Let Ms := A− sId, so that M r

s [Fs]Kb = 0. Then,

(M −Ms)
r [Fs]Kb = M

r−1∑
i=0

(
r

i

)
(−1)iM r−1−iM i

s[Fs]Kb.

Therefore, (M −Ms)
r [Fs]Kb = MC[Fs]Kb, where C :=

∑r−1
i=0

(
r
i

)
(−1)iM r−1−iM i

s. Now,
(M −Ms)

r = (s− σ)rId, hence

(s− σ)r ·Q[Fs]Kb = Q (M −Ms)
r [Fs]Kb = QMC[Fs]Kb = DP−1C[Fs]Kb. (16)
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And as above, Equation (16) gives

(s− σ)rπ[Fs]Kb = 0. (17)

Finally, since s 6= σ, we have π[Fs]Kb = 0, up to a certain level of precision (see Remark 5).
That is, π must be orthogonal to all overconvergent modular forms not in the σ-eigenspace.

�

Remark 5. It is crucial in Equations (15) and (17) that we are working over Zp in order
to conclude that π[fs]Kb and π[Fs]Kb are zero. However, in practice, we are working over
Z/pmZ for some m ∈ Z. So Equation (17) actually becomes pm|(s− σ)rπ[fs]Kb, which does
not necessarily imply that pm|π[fs]Kb. Therefore, there is a loss of precision of r ·valp(s−σ).
This loss of precision can be bounded above by looking at the largest non-zero entry of D,
since valp(s− σ) ≤ maxi valp(Di,i). To see this, using Equation (14), write

(s− σ) rowi(Q) · [fs]Kb = Di,i rowi(P
−1) · [fs]Kb.

We now explain how to compute the projection eeigenspace σ(H) of an overconvergent mod-
ular form H in Moc

k (Zp, N, χ; p
p+1

) over the σ-eigenspace. First, we know that

H = ρfσ +
∑
s 6=σ

Fs, (18)

for some constant ρ, since we are assuming that the σ-eigenspace is one dimensional. This
gives us π · [H] = ρ(π · [fσ]). This is why we call π the projector to fσ. Now, since π is
non trivial, it cannot be orthogonal to all modular forms, so π · [fσ] cannot also be zero. We
hence deduce the following formula for the projection of H over fσ:

λfσ(H) := ρ =
π · [H]Kb

π · [fσ]Kb

. (19)

More formally, the projection operator λfσ over fσ is the unique Hecke-equivariant linear
functional that factors through the Hecke eigenspace associated to fσ and is normalized to
send fσ to 1 (cf. Definition 2.7 of [Loe18]). This gives us an associated idempotent operator
efσ(·) := λfσ(·) fσ. Since we are assuming that the σ-eigenspace is one dimensional, we have
eeigenspace σ(H) = efσ(H).

As explained in Remark 3, this holds under the assumption that H has growth condition
p
p+1

. In the case where H has growth condition 1
p+1

, we need to first apply the Atkin operator

to H to obtain a modular form Up(H) of growth rate p
p+1

, as in Remark 3. Indeed, write H

as a sum H = ρfσ +
∑

s 6=σ Fs, as in Equation (18). Then,

Up(H) = ρσfσ +
∑
s 6=σ

Up(Fs).

Since the action of Up preserves the eigenspaces of Moc
k (N), we get that π · [Up(Fs)]Kb = 0

for s 6= σ, so π · [Up(H)]Kb = ρσ π · [fσ]Kb. Finally,

λfσ(Up(H)) = ρσ = σ λfσ(H).

We thus obtain

λfσ(H) =
π · [Up(H)]Kb

σ π · [fσ]Kb

. (20)
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Remark 6. In the case where the eigenvalue σ has multiplicity r greater than one, the
eigenspace associated to σ will contain eigenforms other than the one we are projecting on.
The method we are presenting here will thus not work because the projector eeigenspace σ over
σ-eigenspace is not equal to efσ anymore. In this case, one needs to use the last r rows of
Q and the other Hecke operators in order to find a system of equations to solve and obtain
λfσ(H).

As a simple example, assume that we already have a basis for the σ-eigenspace consisting
of normalized Hecke eigenforms {f1, ..., fr}, with f1 = fσ. We then express the eigenspace σ
projection of H as a linear combination

∑
j ajfj. Using the last r rows π1, ..., πr of Q, we

obtain a system of equations πi · [H] =
∑

j aj πi · [fj]. This can easily be solved in order to

find a1 = λfσ(H). The author has not yet implemented this method.

4. A symmetric p-adic symbol for triples of modular forms

To a modular form φ of weight two and level N , one can associate a differential ωφ ∈
H1

dR(X1(N)). In general, given a modular form φ of weight r + 2 and level Γ1(N), one can
associate to it a differential ωφ ∈ Filr+1Hr+1

dR (Er/Cp), where E is the universal generalised
elliptic curve fibered over X1(N), and Er is the Kuga-Sato variety as in [Sch90]. Note that
the φ-isotypic component of Hr+1

dR (Er/Cp), denoted Hr+1
dR (Er/Cp)φ is two dimensional. As-

sume now that φ is ordinary at p. This implies the existence of a one dimensional subspace
(the unit root subspace) on which the Frobenius endomorphism acts as multiplication by a
p-adic unit. We can then pick a unique element ηu-r

φ in this unit root subspace to extend
{ωφ} to a basis {ωφ, ηu-r

φ } such that 〈ωφ, ηu-r
φ 〉 = 1, where 〈·, ·〉 is the alternating Poincaré

duality pairing on Hr+1
dR (Er/Cp).

Let f, g, h be three cuspidal eigenforms of level N , respective weights k, `,m and respective
characters χf , χg, χh. Fix a prime p ≥ 5 and assume that p 6 |N , that χfχgχh = 1 and that
the weights k, `,m are balanced, i.e. the largest one is strictly smaller than the sum of
the other two. The assumption p ≥ 5 is purely for simplicity and could potentially be
relaxed at the cost of some extra care. Let αf,p, βf,p be the roots of the Hecke polynomial
x2−ap(f)x+pk−1χf (p). Assume that the modular forms f, g and h are ordinary and regular
at p, so that αf,p, αg,p and αh,p are units. Let fα and fβ be the p-stabilizations of f given by
Equation (1). Let

t :=
`+m− k − 2

2
≥ 0, c :=

k + `+m− 2

2
.

We may then define the Euler factors:

E(f, g, h) := (1− βfαgαhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c);
Ẽ(f, g, h) := (1− αfαgαhp−c)(1− αfαgβhp−c)(1− αfβgαhp−c)(1− αfβgβhp−c);

E0(f) := 1− β2
fχ
−1
f (p)p1−k; Ẽ0(f) := 1− α2

fχ
−1
f (p)p1−k;

E1(f) := 1− β2
fχ
−1
f (p)p−k; Ẽ1(f) := 1− α2

fχ
−1
f (p)p−k.

(21)

4.1. The Garrett-Rankin triple product p-adic L-function. Following Section 2.6 of
[DR14], let Γ := 1 + pNZp and let Λ := O[[Γ]] be the completed group ring of Γ. Let also
Λ′ := Frac(Λ). Lastly, let f ,g,h be Hida families, with coefficients in finite flat extensions
Λf ,Λg,Λh of Λ, interpolating f , g and h at the weights k, ` and m. The existence of such
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families is guaranteed by Hida’s construction in [Hid86]. Let f∗ := f ⊗ χ−1
f , and note that

for classical points x (in Z) we have (f ∗)x = (fx)
∗. We write κ(x) for the weight of fx.

Assume now that the action of the Hecke algebra on the ordinary subspace in weight k is
semi-simple (Assumption (S3) on p. 222 in [Hid93]). This is the case for N square-free, since
k ≥ 2, as is described in [Lau14]. This allows us to define the following operator. Given an
ordinary eigenform F and an ordinary overconvergent modular form G we let c(F,G) denote
the coefficient of F appearing in the expression of G as a linear combination of ordinary
(normalized) eigenforms.

Definition 4.1 (Lemma 2.19, [DR14]). The Garrett-Rankin triple product p-adic L-function
attached to the triple (f ,g,h) of Λ-adic modular forms is the unique Lp(f ,g,h) in Λ′f ⊗Λ

(Λg ⊗ Λh ⊗ Λ) such that at classical balanced points (x, y, z) we have

Lp(f ,g,h)(x, y, z) := c
(
f ∗(p)x , eord(d−1−t(gy

[p])× hz)
)
, (22)

where t := κ(y)+κ(z)−κ(x)−2
2

, f ∗x := fx ⊗ χ−1
f is the dual of fx and f

∗(p)
x is the ordinary p-

stabilization of f ∗x . We write Lp(f ,g,h) := c
(
f∗, eord(d•g[p] × h)

)
for notational brevity.

Remark 7. We project over f∗ := f⊗χ−1
f instead of f in Definition 4.1 because eord(d•g[p]×h)

has character χgχh = χ−1
f .

We can express the Garrett-Rankin triple product p-adic L-function Lp(f ,g,h) at classical

balanced points as Lp(f ,g,h)(x, y, z) := λf∗x,α(d−1−tg
[p]
y × hz), where f ∗x,α := (f ∗x)α is the

ordinary p-stabilization of the dual of fx and λ is the projection operator from Section 3.2.
Equation (22) reveals that in order to experimentally compute values for Lp(f ,g,h)(x, y, z)

the main ingredient is the computation of ordinary projections of p-adic modular forms. In
[Lau14], parts of which have been summarized here in Section 2.3, the author explains
how to calculate the ordinary projections of overconvergent modular forms, and is thus
able to compute special values of the Garrett-Rankin triple product p-adic L-function, for
balanced weights (k, `,m) satisfying k = 2 + m − `. Indeed, this condition guarantees that
d−1−t(g`

[p])× hm will be overconergent, thus the code and the theory in [Lau14] are enough.
In general, however, when the weights (k, `,m) are only balanced, d−1−t(gy

[p])×hz is only
nearly overconvergent. We therefore need to use the generalizations we introduced in Section
3.1 in order to compute ordinary projections of nearly overconvergent modular forms, thus
being able to compute the Garrett-Rankin triple product p-adic L-function for any balanced
classical weights.

In Section 3 of [DR14], the authors construct the generalized Gross-Kudla-Schoen diagonal
cycle ∆ := ∆k,`,m for a triple of balanced classical weights (k, `,m). More precisely, this
cycle is an element of the Chow group CHr+2(W )0 where W := Ek−2 × E `−2 × Em−2 and
r := (k + `+m)/2− 3. One can check from Definition 3.3 of [DR14] that ∆k,`,m indeed has
codimension r + 2. Let

AJp : CHr+2(W )0 −→ Filr+2H2r+3
dR (W )∨

be the p-adic Abel-Jacobi map (cf. Section (1.2) of [Nek00] or [Bes00]). Darmon and Rotger
then show, in Theorem 3.14 of [DR14], that

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)t+1t!

E1(f)

E(f, g, h)
〈ηu-r
f , d−1−tg[p] × h〉, (23)
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where t := `+m−k−2
2

. In Equation (23), ωg ∈ H`−1
dR (E `−2/Cp)g and ωh ∈ Hm−1

dR (Em−2/Cp)h
denote the differentials associated to the forms g and h that we introduced at the start of Sec-
tion 4. Furthermore, ηu-r

f denotes the element lying in the unit root space of Hk−1
dR (Ek−2/Cp)f∗

such that 〈ωf , ηu-r
f 〉 = 1, where ωf ∈ Hk−1

dR (Ek−2/Cp)f∗ is the differential associated to f ∗.
Note that although our notation for ωg and ωh is the same as the one introduced at the start
of Section 4, our notation for ωf and ηu-r

f is not. Indeed, the roles of f and f ∗ have been
switched in ωf and ηu-r

f ; but g and h are still the same and have not been replaced by their
duals in ωg and ωh. This choice is necessary, as explained in Remark 7, and is consistent
with the notation used in [DR14]. Finally, given the cohomology classes ηu-r

f ∈ Hk−1
dR (Ek−2),

ωg ∈ Hk−1
dR (E `−2) and ωh ∈ Hk−1

dR (Em−2), we can view the product ηu-r
f ⊗ωg ⊗ωh in Equation

(23) as an element of H2r+3
dR (W ) thanks to the Künneth decomposition.

We now, as in Theorem 5.1 of [DR14], provide an alternative way to express the Garrett-
Rankin triple product p-adic L-function by relating it to the generalized Gross-Kudla-Schoen
diagonal cycle as follows.

Proposition 4.2. We have

AJp(∆)(ηu-rf ⊗ ωg ⊗ ωh) = (−1)tt!
E0(f)E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h).

Proof. By Theorem 3.14 in [DR14], we have

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) =

〈
ηu-r
f ,−(−1)tt!E1(f)

E(f, g, h)
ef∗,ord(d−1−tg[p] × h)

〉
.

Note that we write 〈ηu-r
f , φ〉 here to mean 〈ηu-r

f , ωφ〉 by abuse of notation. We observe that the

f ∗-isotypic component of eord(d−1−tg[p] × h) is λf∗α(d−1−tg[p] × h)f ∗α, because we can express

eord(d−1g[p] × h) as

λf∗α(d−1−tg[p] × h)f ∗α + (terms attached to other ordinary forms).

Therefore,

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)t+1t!

E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h)

〈
ηu-r
f , f ∗α

〉
.

Next, f ∗α = E0(f)eord(f ∗) by applying the proof of Lemma 4.1 to f ∗ instead of f , thus by
Proposition 2.11 in [DR14],〈

ηu-r
f , f ∗α

〉
= E0(f)

〈
ηu-r
f , eord(f ∗)

〉
= E0(f)

〈
ηu-r
f , f ∗

〉
= −E0(f),

as
〈
ηu-r
f , f ∗

〉
= −

〈
f ∗, ηu-r

f

〉
= −1 by definition of ηu-r

f . We finally obtain

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)tt!

E0(f)E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h).

�

Corollary 4.3. The Garrett-Rankin triple product p-adic L-function can be written, at clas-
sical balanced points (k, `,m), as

Lp(f ,g,h)(k, `,m) =
(−1)t

t!

E(f, g, h)

E0(f)E1(f)
AJp(∆)(ηu-rf ⊗ ωg ⊗ ωh). (24)
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Equation (22), provides us with a compact way to express the Garrett-Rankin p-adic L-
function. Equation (24) on the other hand connects it to the Abel Jacobi map and provides us
with the right insight in order to define a new natural symbol, based on the Garrett-Rankin
triple product p-adic L-function, which we expect to have nice symmetry properties.

4.2. A new p-adic triple symbol (f, g, h)p. We continue working in the same setup as the
previous section. The differentials ωg ∈ H`−1

dR (E `−2/Cp)g and ωh ∈ Hm−1
dR (Em−2/Cp)h are the

basis elements that we introduced at the start of Section 4. Similarly to Section 4.1, ωf will
denote the differential associated to f ∗, and not f . This choice is necessary, as explained in
the second part of Remark 7.

Our goal is to define define a new quantity involving AJp(∆)(ωf ⊗ ωg ⊗ ωh) instead of
AJp(∆)(ηu-r

f ⊗ ωg ⊗ ωh), and believe that this alternative should have nice symmetry prop-
erties. We investigate such properties further in the following sections. Before defining our
new symbol, we first provide a way to express AJp(∆)(ωf ⊗ωg ⊗ωh) in terms of projections
onto isotypic spaces, similarly to Proposition 4.2. Let

`fgh,α := λf∗α
(
d−1−t(g[p])× h

)
; `fgh,β := λf∗β

(
πoc

(
d−1−t(g[p])× h

))
. (25)

Note that including πoc before λf∗α in (25) would be redundant, by Theorem 2.5.

Lemma 4.1. Let f be a classical eigenform of weight k that is ordinary at p with valp(αf,p) =
0. Then, we have eord(f) = 1

E0(f)
fα and eslope k−1(f) = 1

Ẽ0(f)
fβ.

Proof. We have by definition fα(q) := f(q) − βf(qp) and fβ(q) := f(q) − αf(qp). So,
αfα − αf = βfβ − βf . Hence, αfα − βfβ = (α − β)f . Thus, using the notation from (21),
we have

eord(f) =
αfα
α− β

=
1

E0(f)
fα, eslope k−1(f) =

βfβ
β − α

=
1

Ẽ0(f)
fβ.

�

Theorem 4.4. Let t := `+m−k−2
2

. We may rewrite AJp(∆)(ωf ⊗ ωg ⊗ ωh) as

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = (−1)tt!
〈ωf , φ(ωf )〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ `fgh,α +

Ẽ1(f)

Ẽ(f, g, h)
αf∗ `fgh,β

)
.

Proof. Note that f ∗ is orthogonal to the kernel of ef∗ , so 〈f ∗, φ〉 = 〈f ∗, ef∗(φ)〉 only depends
on the projection ef∗(φ) of φ, for any modular form φ. Adapting this to our notation, we
obtain 〈ωf , φ〉 = 〈ωf , ef∗(φ)〉, as ωf , here, is the differential attached to f ∗. Furthermore,
ef∗(φ) only depends on the overconvergent projection of φ. Indeed, φ − πoc(φ) is purely
nearly overconvergent (i.e. it has no overconvergent part) and will not lie in the f ∗-isotypic
space, as f ∗ is overconvergent. Lemma 4.1 tells us that f has only two slope components:
an ordinary one and one of slope k − 1. Namely, f = 1

E0(f)
fα + 1

Ẽ0(f)
fβ, and thus to project

over the f ∗-isotypic space, one needs to project over the components f ∗α and f ∗β . Adapting
the proof of Proposition 4.2 for the case of AJ(∆)(ωf ⊗ ωg ⊗ ωh), and using the notation
ξ(ωg, ωh) from [DR14] (see Equation (72) on p. 30), we write

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = 〈ωf , ξ(ωg, ωh)〉
= 〈ωf , ef∗,ord(ξ(ωg, ωh)) + ef∗,slope k−1(ξ(ωg, ωh))〉

=

〈
ωf ,

(−1)tt!E1(f)

E(f, g, h)
ef∗,ord(d−1−tg[p] × h)

〉
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+

〈
ωf ,

(−1)tt!Ẽ1(f)

Ẽ(f, g, h)
ef∗,slope k−1

(
πoc(d

−1−tg[p] × h)
)〉

= (−1)tt!
E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h) 〈ωf , f ∗α〉

+ (−1)tt!
Ẽ1(f)

Ẽ(f, g, h)
λf∗β
(
πoc(d

−1−tg[p] × h)
) 〈
ωf , f

∗
β

〉
.

As 〈ωf , f ∗〉 = 〈ωf , ωf〉 = 0, we can write

〈ωf , f ∗α〉 = 〈ωf , f ∗ − βf∗V f ∗〉 = −βf∗ 〈ωf , ωV f∗〉 = − βf∗

pk−1
〈ωf , φ(ωf )〉 .

Similarly,
〈
ωf , f

∗
β

〉
= − αf∗

pk−1 〈ωf , φ(ωf )〉. This gives the desired result. �

We are now ready to write down our new candidate for a symmetric p-adic triple symbol.

Definition 4.5. Let f, g and h be three cuspidal modular forms of level N and respective
weights k, ` and m which are ordinary at p. We define the p-adic triple symbol (f, g, h)p by

(f, g, h)p := (−1)tt!
〈ωf , φ(ωf )〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ `fgh,α +

Ẽ1(f)

Ẽ(f, g, h)
αf∗ `fgh,β

)
. (26)

In Definition 4.5, we do not actually need g and h to be cuspidal nor ordinary at p, as
Equation (26) is still defined when only f is. However, as we are interested in permuting the
order of f , g and h, we often require them all to be cuspidal and ordinary at p. Thanks to
Theorem 4.4, we may reformulate (f, g, h)p as follows.

Corollary 4.6. We have (f, g, h)p = AJp(∆k,`,m)(ωf ⊗ ωg ⊗ ωh).

The right hand side of the equation in Corollary 4.6 appears to be symmetric in the
variables f, g, h, and thus suggests that (f, g, h)p is symmetric.

4.3. Symmetry properties of (f, g, h)p. We are interested in the behaviour of the p-adic
triple symbol (f, g, h)p as we vary the order of f, g and h. Our experiments have shown that
in some cases (f, g, h)p = (f, h, g)p; while in some other cases (f, g, h)p = −(f, h, g)p. This
led us to the following result.

Theorem 4.7. Let f, g, h be three cuspidal newforms of weights k, `,m. Let t := `+m−k−2
2

.
We have the following relations:

Lp(f, g, h) = (−1)t+1Lp(f, h, g),

(f, g, h)p = (−1)t+1(f, h, g)p,

i.e. the parity of t determines the symmetry or anti-symmetry of (f, ∗, ∗)p and Lp(f, ·, ·).

Theorem 4.7 can be proven via an explicit calculation, expanding the definitions of the
involved quantities in terms of Poincaré pairings and noticing that certain forms are exact
and are thus in the kernel of the ordinary projection operator and must also vanish in
cohomology. The full proof can be found in Section 4.3.1 of [Gha23]. We will not present
it here, as an alternative proof for Theorem 4.7 can be obtained, based on that of Theorem
4.8, which we prove in a more general fashion, using the p-adic Abel Jacobi map.

We finally present our main theorem, proving the symmetry property of (∗, ∗, ∗)p, when
permuting its inputs.
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Theorem 4.8. Let f, g, h be three cuspidal newforms of weights k, `,m. Then (f, g, h)p
satisfies the cyclic symmetry relation

(f, g, h)p = (−1)k(g, h, f)p = (−1)m(h, f, g)p.

In particular, when the weights are all even, (f, g, h)p is symmetric when its inputs are
cyclically permuted.

Proof. Assume for simplicity that χf = χg = χh = 1. We start with the case of weights
k = ` = m = 2. In this case, the diagonal cycle ∆2,2,2 is symmetric, as can easily be
seen from Definition 3.1 in [DR14]. Recall that ωf ⊗ ωg ⊗ ωh is given by the Künneth
decomposition and is therefore composed of cup products. So by the properties of cup
products, we have ωf ⊗ ωg = −ωg ⊗ ωf and ωf ⊗ ωh = −ωh ⊗ ωf . We can thus write
AJp(∆2,2,2)(ωf ⊗ ωg ⊗ ωh) = AJp(∆2,2,2)(ωg ⊗ ωh ⊗ ωf ).

For general weights k, `,m, a variation of the above holds. We will first study the action
of permuting the first two coordinates of (f, g, h)p, then the action of permuting the second
and third coordinates and finally combine them to obtain the desired result. We make our
argument explicit using the functoriality properties of the p-adic Abel Jacobi map. Let
r1 := k − 2, r2 := ` − 2, r3 := m − 2, r := (r1 + r2 + r3)/2 and let s be the map going from
W := Er1×Er2×Er3 to W ′ := Er2×Er1×Er3 that permutes the first and second terms. Then s
induces permutations on the corresponding Chow groups and De Rham cohomology groups:
we have a pushforward s∗ on CHr+2(W )0 and a dual pullback s∗,∨ on Filr+2H2r+3

dR (W )∨. The
functoriality properties of the p-adic Abel Jacobi map with respect to correspondences (see
Propositions 1, 2 & 4 (iii) in [EZZ82]) give us the commuting diagram

CHr+2(W )0 Filr+2H2r+3
dR (W )∨

CHr+2(W ′)0 Filr+2H2r+3
dR (W ′)∨.

AJp

s∗ s∗,∨

AJp

Thus, AJps∗ = s∗,∨AJp. Given Z ∈ CHr+2(W )0 and some ω ∈ Filr+2H2r+3
dR (W ′), we get

AJp(s∗Z)(ω) = (s∗,∨AJp(Z))(ω) = AJp(Z)(s∗ω). We can now apply this to the generalized
Gross-Kudla-Schoen diagonal cycle ∆k,`,m and take ω := ωg ⊗ ωf ⊗ ωh. We see that the
action of s∗ on ω is given by s∗(ωg ⊗ ωf ⊗ ωh) = (−1)(k−1)(`−1)(ωf ⊗ ωg ⊗ ωh), by the skew
symmetry of cup products (which are part of the Künneth decomposition). Furthermore,
the action of s∗ on ∆k,`,m is given by s∗∆k,`,m = (−1)r+(r1r2)∆`,k,m. The proof of this is
purely combinatorial: one needs to expand Definition 3.3 of ∆k,`,m ∈ CHr+2(W )0 in [DR14]
and permute two subsets of {1, ..., r} of size r1 and r2 and intersection of size r− r3. Finally,
r+ r1r2 + (k− 1)(`− 1) = (k+ `−m)/2 mod 2, therefore we obtain the symmetry formula

(f, g, h)p = (−1)(k+`−m)/2(g, f, h)p.

Similarly, (f, g, h)p = (−1)(`+m−k)/2(f, h, g)p. Combining these two symmetry formulas gives
(f, g, h)p = (−1)k(g, h, f)p. �

5. Examples

5.1. Computing Poincaré pairings. Using our algorithms from Section 3, we can com-
pute `fgh,α and `fgh,β appearing in Equation (26). The only remaining factor in this equation
that is non-trivial to calculate is the period Ωf := 〈ωf , φ(ωf )〉.
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When f is a newform (with rational coefficients) of weight 2, we can use the following trick
to calculate Ωf , as was done in Section 4 of [DL21]. Let E be the elliptic curve associated to

f . The differential ωf = f dq
q

corresponds to the differential ωE := dx
y

of the elliptic curve E.

Computing the Poincaré pairing 〈ωf , φ(ωf )〉 now amounts to calculating 〈ωE,Frob(ωE)〉, up
to including the modular degree mE of E: 〈ωf , φ(ωf )〉 = mE 〈ωE,Frob(ωE)〉. Let M be the
matrix representing the action of Frobenius, up to precision pm, on ωE = dx

y
and ηE := xdx

y
.

Then, 〈ωE,MωE〉 = 〈ωE,M11ωE +M21ηE〉 = M21 so that the period Ωf is simply given by

Ωf = mEM21 mod pm,

and the matrix M can be efficiently computed via Kedlaya’s algorithm (cf. [Ked01]).
In the case where f has weight k strictly greater than 2, we cannot use the above trick

anymore. Instead, we can exploit the symmetry of (∗, ∗, ∗)p and the algorithms mentioned so
far in this paper. Indeed, in order to calculate the period Ωf , we first appropriately chose two
auxiliary forms f0 and ϕ, such that Ωf0 is known or computable (e.g. when f0 has weight 2).
Then, using the symmetry relation of Theorem 4.8, we obtain (f, f0, ϕ)p = (−1)k(f0, ϕ, f)p.
The right hand side containing Ωf0 is entirely known, whereas the left hand side is entirely
computable except for Ωf . We can thus recover the value of Ωf .

This method is explained is great detail in Section 6.2 of [Gha23]. It is however simpler to
illustrate it by means of examples. See in particular Examples 3, 5 and 6 in the next section.

5.2. Symmetry relations for even weights. We dedicate this section to gathering ex-
perimental evidence verifying Theorem 4.8, thus providing examples that demonstrate the
correctness of our algorithms described in Section 3.

We begin with a simple case where all modular forms have weight 2. This only involves
overconvergent modular forms, and we can compute Ωf via Kedlaya’s algorithm.

Example 1. Consider the space of newforms Snew
2 (Q, 57) of weight 2 and level 57. Let f, g

and h be the cuspidal newforms in Snew
2 (Q, 57) given by:

f = q − 2q2 − q3 + 2q4 − 3q5 + 2q6 − 5q7 + q9 + 6q10 + q11 + ...,

g = q + q2 + q3 − q4 − 2q5 + q6 − 3q8 + q9 − 2q10 + ...,

h = q − 2q2 + q3 + 2q4 + q5 − 2q6 + 3q7 + q9 − 2q10 − 3q11 + ....

Fix p := 5 and let fαf,p and fβf,p denote the p-stabilizations of f at p. Then f, g and h
are regular and ordinary at p. Using the algorithms described in Section 3, we compute the
quantities `fgh,α, `fgh,β, `ghf,α, `ghf,β, `hfg,α, `hfg,β and obtain

`fgh,α = −3774928826965787816511437758179915984738972855613348870149740387513806 mod 5100,

`fgh,β = −1600120463087968696799905890349018972704454279824366881678828640068804 · 5−1 mod 599,

`ghf,α = 3414089135682117556340078214096537672013164967359802729338191598002457 · 5 mod 5101,

`ghf,β = 319324687965512071716318643272796126647017637487474169128482176479703 mod 5100,

`hfg,α = 3386642279338565749426053729955310360166771341172640348803607194424548 · 5−1 mod 599,

`hfg,β = −1362182692510584292629393424534010351729144263363030199124032659953338 mod 5100,

`fhg,α = 3774928826965787816511437758179915984738972855613348870149740387513806 mod 5100,

`fhg,β = 880679317526405930264409438811117931242490011004937901328334255303179 · 5−1 mod 599,
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`gfh,α = −3414089135682117556340078214096537672013164967359802729338191598002457 · 5 mod 5101,

`gfh,β = 1316444872164870993756743549790237920953950571465279247158114744839078 mod 5100,

`hgf,α = −1808920468896542138602596599389737900820358470954594339263049333096423 · 5−1 mod 599,

`hgf,β = −1848796736101022160118506527593042717532675210104737039492910699421662 mod 5100.

Note that we indeed have `fgh,γ = −`fhg,γ. In order to experimentally verify the symmetry
property of Theorem 4.8, we will now compute the periods Ωf ,Ωg,Ωh. Using Kedlaya’s
algorithm, we obtain

Ωf = 29505681199130962626561255838977599356333294679056282865324073514068 · 52 mod 5100,

Ωg = −159133461381175901704339380528584168392746264473700984619726139435577 · 5 mod 5100,

Ωh = 78414893708965262061304860105818868793779659587029031834898206619639 · 52 mod 5100.

Finally, putting everything together we obtain

(f, g, h)p = 5871767952506844465150908265973598858284513190743516082327198557652 · 52 mod 5100,

(g, h, f)p = 94224189337260166671264507577645656581683633922954092616598438792027 · 52 mod 5100,

(h, f, g)p = 328989194731033279961794928605802838532429869011399338836233448557652 · 52 mod 5100.

And we can check that all these values agree modulo 597.

The next example involves nearly overconvergent modular forms, thus utilizing the full
power of Section 3.2. Since we cannot compute the period Ωf as in Example 1, we use the
following ratio trick. We introduce an extra modular form h2 and check for

(f, g, h1)p
(f, g, h2)p

?
=

(g, h1, f)p
(g, h2, f)p

. (27)

This has the advantage of bypassing the calculation of the periods Ωf and Ωg, as they appear
in both the numerator and the denominator of Equation (27).

Example 2. Let f, g, h, h2, h3 ∈ S4(Q, 45) be the cuspidal newforms given by:

f = q − q2 − 7q4 − 5q5 − 24q7 + 15q8 + 5q10 − 52q11...,

g = q − 3q2 + q4 + 5q5 + 20q7 + 21q8 − 15q10 + 24q11...,

h = q + 4q2 + 8q4 + 5q5 + 6q7 + 20q10 − 32q11 + ...,

h2 = q − 5q2 + 17q4 + 5q5 − 30q7 − 45q8 − 25q10 − 50q11 + ...,

h3 = q + 5q2 + 17q4 − 5q5 − 30q7 + 45q8 − 25q10 + 50q11 + ....

For p := 17, we have a17(f) ·a17(g) ·a17(h) ·a17(h2) ·a17(h3) 6= 0. When considering the p-adic
symbols (φ1, φ2, φ3)p, for φi ∈ {f, g, h, h2, h3} distinct and up to permutations, we have ten
potential values to compute. Up to precision 30 (i.e. in Z/1730Z), seven give us zero. That is,
for {φ1, φ2, φ3} ∈ {{f, g, h}, {f, g, h3}, {f, h, h3}, {f, h2, h3}, {g, h, h2}, {g, h2, h3}, {h, h2, h3}}
and γ ∈ {α, β}, we have `φ1φ2φ3,γ = 0. The non-zero values are the ones involving {f, g, h2},
{f, h, h2} and {g, h, h3}. We compute

(f, g, h2)p/Ωf = −1023342994315815801374020643871 · 172 mod 1730,

(f, h, h2)p/Ωf = 68362151699300710278000063432 · 172 mod 1730,

(h2, f, g)p/Ωh2 = −2631698743570631185431705415466 · 172 mod 1730,
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(h2, f, h)p/Ωh2 = 248547247830740599793540647737 · 172 mod 1730.

Thus,
(f, g, h2)p
(f, h, h2)p

/
(h2, f, g)p
(h2, f, h)p

= 1 mod 1725.

Now that we have seen how to get around the issue of computing the periods, we show
that our algorithms, thanks to Theorem 4.8, allow us to recover the value of periods Ωφ for
modular forms φ of weight greater than 2, as is described in Section 5.1.

Example 3. Fix again p := 17. Let f, g, h2, h3 ∈ S4(Q, 45) be the same as in Example 2 and
let f0 ∈ S2(Q, 45) be the newform given by f0 = q+q2−q4−q5−3q8−q10 + .... We compute

(f0, f, h3)p/Ωf0 = 16513223984800935050336063815246 · 173 mod 1730,

(f, h3, f0)p/Ωf = 13539421372161396100812664727177 · 17 mod 1730,

(f0, h2, g)p/Ωf0 = −3366884595101012754561302551722 · 172 mod 1730,

(h2, g, f0)p/Ωh2 = 93393936291523115360189136554 mod 1730.

Using Kedlaya’s algorithm, we also compute

Ωf0 = 〈ωf0 , φ(ωf0)〉 = 73740522216959426358743952636082111 · 17 mod 1730.

Thus, we deduce that we must have

Ωf = Ωf0 ·
(f0, f, h3)p/Ωf0

(f, h3, f0)p/Ωf

= −8862546113964214628352195959100 · 173 mod 1727,

Ωh2 = Ωf0 ·
(f0, h2, g)p/Ωf0

(h2, g, f0)p/Ωh2

= −1728830956772474294735820116226 · 173 mod 1726.

Example 4. Thanks to Example 3, we have computed Ωf and Ωh2 . We can thus go back to
Example 2 and calculate

(f, g, h2)p = −239652798828174535366407660241 · 175 mod 1730,

(h2, f, g)p = 5530974613520227843573162330816 · 175 mod 1730,

(f, h, h2)p = −853772346178158460670635373010 · 175 mod 1730,

(h2, f, h)p = −853772346178158460670635373010 · 175 mod 1730.

And we have (f, g, h2)p = (h2, f, g)p mod 1730 and (f, h, h2)p = (h2, f, h)p mod 1730.

We conclude this section with two longer examples involving different modular forms of
different weights.

Example 5. Fix p = 11 and let f0 ∈ S2(Q, 21) and f, g, h ∈ S6(Q, 21) be the cuspidal
newforms given by

f0 = q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 + 2q10 + 4q11 + ...,

f = q + q2 − 9q3 − 31q4 − 34q5 − 9q6 − 49q7 − 63q8 + 81q9 − 34q10 − 340q11 + ...,

g = q + 5q2 + 9q3 − 7q4 + 94q5 + 45q6 − 49q7 − 195q8 + 81q9 + 470q10 + 52q11 + ...,

h = q + 10q2 + 9q3 + 68q4 − 106q5 + 90q6 − 49q7 + 360q8 + 81q9 − 1060q10 + 92q11 + ....

From Kedlaya’s algorithm, we have

Ωf0 = 412797842384875685536202567431940950593928402977097 · 11 mod 1150.
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Consider the triple (f0, f, g). We can compute

(f0, f, g)p/Ωf0 = −2257599454326142239276759004266889152843755460 · 115 mod 1149,

(f, g, f0)p/Ωf = −2816145142524823359002534585019971120441513443 mod 1144,

(g, f0, f)p/Ωg = −1202790078682800562850336220378526707376378726 mod 1144.

This allows us to recover the periods:

Ωf = Ωf0 ·
(f0, f, g)p/Ωf0
(f, g, f0)p/Ωf

= −2509689183927003985676644860386486830080817519 · 116 mod 1150,

Ωg = Ωf0 ·
(f0, f, g)p/Ωf0
(g, f0, f)p/Ωg

= 2597224237884861326788056615405141084095558737 · 116 mod 1150.

(28)

Consider now the triple (f0, f, h). We can compute

(f0, f, h)p/Ωf0 = −2847504000645971661684808020815460021295815552 · 114 mod 1150,

(f, h, f0)p/Ωf = 208861134786059864497993853997286411529878026 · 11−1 mod 1150,

(h, f0, f)p/Ωh = 150562340318535656035117305085357243695039436 mod 1150.

This allows us to recover the periods:

Ωf = Ωf0 ·
(f0, f, h)p/Ωf0
(f, h, f0)p/Ωf

= −934214497598799103313636376811725028664923638 · 116 mod 1150,

Ωh = Ωf0 ·
(f0, f, h)p/Ωf0
(h, f0, f)p/Ωh

= 1135142804419315201548085509390534816579616824 · 115 mod 1149.

(29)

Note that we can also check that the two values we obtained for the period Ωf in Equations
(28) and (29) agree modulo 1146. We can also compute

(f, g, h)p/Ωf = 40268985822287576957977484998251829978986804 · 112 mod 1149,

(g, h, f)p/Ωg = −52341418987674502913103090342525976869279460 · 112 mod 1149,

(h, f, g)p/Ωh = −51832911640971887401862589998201231551663284 · 113 mod 1150.

This finally allows us to calculate, using Equations (28) and (29), the full values:

(f, g, h)p = 20986917589986718469194287107276286895307311 · 118 mod 1150,

(g, h, f)p = −22914560311143954782518388246573725956557586 · 118 mod 1150,

(h, f, g)p = 7861733475215692445486373857156179960213682 · 118 mod 1150.

And we can check that all these values agree modulo 1148.

Example 6. Fix again p = 11. Let f0 ∈ S2(Q, 26), f, g, h ∈ S4(Q, 26) and f1, f2, f3 ∈
S8(Q, 26) be the cuspidal newforms given by

f0 = q − q2 + q3 + q4 − 3q5 − q6 − q7 − q8 − 2q9 + 3q10 + 6q11 + ...,

f1 = q + 8q2 − 27q3 + 64q4 − 245q5 − 216q6 − 587q7 + 512q8 − 1458q9 − 1960q10 − 3874q11 + ...,

f2 = q + 8q2 − 87q3 + 64q4 + 321q5 − 696q6 − 181q7 + 512q8 + 5382q9 + 2568q10 + 7782q11 + ...,

f3 = q − 8q2 − 39q3 + 64q4 + 385q5 + 312q6 − 293q7 − 512q8 − 666q9 − 3080q10 − 5402q11 + ...,

f = q + 2q2 − q3 + 4q4 + 17q5 − 2q6 − 35q7 + 8q8 − 26q9 + 34q10 + 2q11 + ...,

g = q + 2q2 + 4q3 + 4q4 − 18q5 + 8q6 + 20q7 + 8q8 − 11q9 − 36q10 − 48q11 + ...,

h = q − 2q2 + 3q3 + 4q4 + 11q5 − 6q6 + 19q7 − 8q8 − 18q9 − 22q10 − 38q11 + ....
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From Kedlaya’s algorithm, we have

Ωf0 = 390581636402185053366232716528660201295552925543487 · 11 mod 1150.

Consider the triple (f0, f1, f2). We can compute

(f0, f1, f2)p/Ωf0 = −5933660141750195368504774740219722366045619600 · 117 mod 1150,

(f1, f2, f0)p/Ωf1 = 14109208854192176214141915814693455702656065 · 11 mod 1150,

(f2, f0, f1)p/Ωf2 = −7793794748784781599257971674959575446350726 · 11 mod 1150.

This allows us to recover the periods:

Ωf1 = Ωf0 ·
(f0, f1, f2)p/Ωf0
(f1, f2, f0)p/Ωf1

= −210270517651766028348415614154362330709392521 · 117 mod 1150,

Ωf2 = Ωf0 ·
(f0, f1, f2)p/Ωf0
(f2, f0, f1)p/Ωf2

= −288814942721593214967913348978722878649507578 · 117 mod 1150.

Now in order to recover Ωf ,Ωg,Ωh, we compute

(f, f1, f3)p/Ωf = 40903568201933522569570898222005174659773400 · 116 mod 1147,

(f1, f3, f)p/Ωf1 = −1371650302863648283749356335039702487573085 · 112 mod 1143,

(g, f1, f3)p/Ωg = 220420945295555475043577140565385460000211280 · 115 mod 1146

(f1, f3, g)p/Ωf1 = 1458224252254476116040209429849988597407090 · 112 mod 1143,

(h, f2, f2)p/Ωh = −22167932026142135533189834503070255673967600 · 116 mod 1147

(f2, f2, h)p/Ωf2 = −1179453771945534511715867212869271933099333 · 112 mod 1143.

This allows us to recover the periods:

Ωf = Ωf1 ·
(f1, f3, f)p/Ωf1

(f, f1, f3)p/Ωf
= −899774887450008918231593851176607448072958 · 113 mod 1144,

Ωg = Ωf1 ·
(f1, f3, g)p/Ωf1

(g, f1, f3)p/Ωg
= 36578899966340566317653585313947952362533 · 114 mod 1145,

Ωh = Ωf2 ·
(f2, f2, h)p/Ωf2

(h, f2, f2)p/Ωh
= −1778956364295561925487995272361714970219339 · 113 mod 1144.

We finally can calculate the full values:

(f, g, h)p = 479359167857389648779593478353399577891020 · 115 mod 1146,

(g, h, f)p = 1399506016598818090453046501872791514634546 · 115 mod 1146,

(h, f, g)p = 2095226804671605448791510983070380539977212 · 115 mod 1146.

And we can check that all these values agree modulo 1143.

5.3. Failure of symmetry for odd weights. Let f, g, h be modular forms of balanced
weights k, `,m such that k is even and `,m are odd. Theorem 4.8 tells us that (f, g, h)p =
(g, h, f)p = −(h, f, g)p, and we thus see that we do not have perfect symmetry because of the
factor −1 appearing in the last term. In fact, the only way to have this perfect symmetry
in general is for (f, g, h)p to be trivial when its inputs do not all have even weights.

Experimental evidence shows that this is not actually the case and thus implies that we
cannot expect (f, g, h)p to always be symmetric (when the inputs are permuted cyclically),
if the weights are not all even. We present our examples below.
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Example 7. Let χ be the Legendre symbol
( ·

11

)
. Let f0 ∈ S2(Q,Γ0(11)) and f ∈ S7(Q,Γ1(11), χ)

be the cuspidal newforms given by

f0 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 + ...,

f = q + 10q3 + 64q4 + 74q5 − 629q9 − 1331q11 + ....

Pick p = 23. We have ap(f0) · ap(f) 6= 0. Using our algorithm, we calculate (f0, f, f)p to be

31546925362985192479627183464312205821578431521869740322354 · 237 mod 2350.

In particular, (f0, f, f)p 6= 0.

Example 8. Let χ be the Legendre symbol
( ·

11

)
. Let f0 ∈ S2(Q,Γ0(11)) and f ∈ S5(Q,Γ1(11), χ)

be the cuspidal newforms given by

f0 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 + ...,

f = q + 7q3 + 16q4 − 49q5 − 32q9 + 121q11 + ....

Pick p = 23. We have ap(f0) · ap(f) 6= 0. Using our algorithm, we calculate (f0, f, f)p to be

6507713287936999052116951605714489492434730289541301877894764 · 235 mod 2350,

which is non-zero.

Example 9. Let f ∈ S2(Q,Γ0(15)), g, h ∈ S3(Q,Γ1(15)) be the cuspidal newforms given by

f = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + ...,

g = q + q2 − 3q3 − 3q4 + 5q5 − 3q6 − 7q8 + 9q9 + 5q10 + ...,

h = q − q2 + 3q3 − 3q4 − 5q5 − 3q6 + 7q8 + 9q9 + 5q10 + ....

Pick p = 13. Note that we actually have ap(f) 6= 0 but ap(g) = ap(h) = 0 here. This doesn’t
pose any issues to our algorithms. We obtain

(f, g, h)p = (f, h, g)p = 57640757896634901611871044405230131156356129425185649 · 13 mod 1348.

In particular, (f, g, h)p 6= 0 and is symmetric in the 2nd and 3rd variables.

Example 10. Let f ∈ S2(Q,Γ0(15)), g, h ∈ S5(Q,Γ1(15)) be the cuspidal newforms given by

f = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + ...,

g = q + 7q2 − 9q3 + 33q4 − 25q5 − 63q6 + 119q8 + 81q9 − 175q10 + ...,

h = q − 7q2 + 9q3 + 33q4 + 25q5 − 63q6 − 119q8 + 81q9 − 175q10 + ....

Pick p = 17. We have ap(f) · ap(g) · ap(h) 6= 0. We then calculate:

(f, g, h)p = (f, h, g)p = 8960308425349268584612725752076582316781113083897858380 · 175 mod 1750 6= 0.
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nales mathématiques du Québec, pages 1–18, 2021.

[DLR16] Henri Darmon, Alan Lauder, and Victor Rotger. Gross–stark units and p-adic iterated integrals
attached to modular forms of weight one. Annales mathématiques du Québec, 40:325–354, 2016.
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[Urb14] Eric Urban. Nearly overconvergent modular forms. In Iwasawa theory 2012, pages 401–441.

Springer, 2014.
[Wan98] Daqing Wan. Dimension variation of classical and p-adic modular forms. Inventiones mathematicae,

133(2):449–463, 1998.

E-mail address: wissam.ghantous@ens.fr

wissam.ghantous@ens.fr

	1. Introduction
	2. Background
	2.1. Modular forms
	2.2. The Up operator
	2.3. Ordinary projections of overconvergent modular forms

	3. Algorithmic methods
	3.1. Ordinary projections of nearly overconvergent modular forms
	3.2. Eigenspace  projections

	4. A symmetric p-adic symbol for triples of modular forms
	4.1. The Garrett-Rankin triple product p-adic L-function
	4.2. A new p-adic triple symbol (f,g,h)p
	4.3. Symmetry properties of (f,g,h)p

	5. Examples
	5.1. Computing Poincaré pairings
	5.2. Symmetry relations for even weights
	5.3. Failure of symmetry for odd weights

	References

