
Computational Aspects of Modular
Forms and a p-adic Triple Symbol

Wissam Ghantous
Wadham College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2023

Abstract

In this thesis we study a p-adic symbol for triples of modular forms which was proposed to
the author by Henri Darmon. Our main achievements are as follows. We prove the various
symmetry properties of this p-adic triple product. We develop and successfully implement
an efficient algorithm for calculating it; in the case in which all the forms have weight
greater than two we require an auxiliary non-vanishing hypothesis. And we illustrate
the application of our algorithm with numerous examples. A curious consequence of our
work, relating to our non-vanishing hypothesis, is an efficient method to calculate certain
Poincare pairings in higher weight.

Our symbol is intimately related to p-adic L-functions for triples of modular forms.
However, we do not study at all continuity properties of our p-adic triple symbol. Indeed,
any well-behaved variation of our symbol in the first variable is likely to be extremely
subtle to study, and there may well be no way at all of making sense of this.

1

Acknowledgments

I would first and foremost like to thank my supervisor Professor Alan Lauder. He has
always been very kind and encouraging, and helped make me the independent researcher
I am today.

I am also grateful to the other professors that had a valuable input to my thesis, most
notably Professors Henri Darmon, David Loeffler, and Victor Rotger. Their insight, ad-
vice and patience was invaluable and allowed me to complement my computational work
with the appropriate theoretical results. The many conversations we had, in Montreal,
Warwick, Zurich, and Milan, during the second half of my DPhil, were crucial to allowing
me to complete my thesis as well as a paper containing the main results of my thesis.

I also would like to mention my collaborators Federico Pintore and Mattia Veroni.
Although our collaborations only dealt with research in cryptography, I am thankful for
their support and friendship. Working with them truly was a highlight of the past few
years. I look forward for more to come.

In addition to the actual work we did together, I learned so much from them about the
process of effectively conducting collaborations, research and the submission of preprints
to journals. Federico, in particular, gave me a lot of practical advice while submitting
my first preprint.

I also need to thank my colleagues and friends at Oxford that have been of great
support, especially during the tougher terms. There would be too many of them to
name here, in addition to the fear of forgetting to mention them all. Some I have met
at the Mathematical Institute, some I have met through friends and other colleagues,
and so many I have met at Wadham College, in the rowing club, the MCR, or the din-
ing hall. To all these friends, from the bottom of my heart, I say: thank you for being
such amazing friends, I really hope to stay in touch and see you all very soon, somewhere.

I am extremely grateful for the McCall MacBain Foundation for their partial funding
of my DPhil at Wadham College, at the University of Oxford. Their contribution allowed
me to pursue this degree, a truly life changing experience that I will forever treasure.
I am also specifically thankful to John McCall MacBain for his personal interest in my
success in this endeavor. His genuine care and support have been a source of inspiration
and I greatly value the human connection we established.

2

Finally, and most importantly, I would like to (and need to) thank my family for
their everlasting love, care, support and advice. Their presence in my life alleviated the
difficulties and hardships associated to graduate studies. I dedicate this work to them,
as this would not have been possible without their everlasting love and support. Thank
you to my parents Tanios and Reine, to my brothers Ziad and Rayan and to my sister
Sarah.

3

Contents

1 Introduction 6

1.1 A simple example . 6

1.2 Structure of the thesis . 7

2 Preliminaries 9

2.1 Modular forms . 9

2.1.1 Classical Modular forms . 9

2.1.2 Overconvergent and p-adic modular forms 13

2.1.3 Nearly overconvergent modular forms 18

2.2 The Up operator . 20

2.2.1 Up acting on classical modular forms 20

2.2.2 Up acting on p-adic modular forms 22

2.2.3 Up acting on overconvergent modular forms 22

2.2.4 Up acting on nearly overconvergent modular forms 23

2.3 The Poincaré pairing . 24

3 Explicit algorithmic methods 26

3.1 Ordinary projections . 26

3.1.1 Computing the Katz Basis and the Up operator 26

3.1.2 Ordinary projections of overconvergent modular forms 28

3.1.3 Ordinary projections of nearly overconvergent modular forms . . . 29

3.2 Eigenspace σ projections . 30

3.2.1 The projector to fσ . 31

3.2.2 The case of multiplicity greater than 1 33

3.2.3 Stabilizations of Hecke eigenforms 34

4 A p-adic symbol for triples of modular forms 35

4.1 The Garrett-Rankin triple product p-adic L-function 35

4

4.2 A new p-adic triple symbol (f, g, h)p . 39

4.3 Symmetry properties of (f, g, h)p . 42

4.3.1 Partial symmetry for (f, ∗, ∗)p . 42

4.3.1.1 Computational evidence 42

4.3.1.2 Proof . 46

4.3.2 Cyclic symmetry for (f, g, h)p . 48

4.3.3 The case of odd weights . 50

4.4 Limitations of (f, g, h)p . 51

5 Examples 52

5.1 Calculations in the overconvergent case 52

5.2 Calculations in the non-overconvergent case 55

5.3 Failure of symmetry for odd weights . 62

6 Computing Poincaré pairings 64

6.1 The case of weight 2 . 64

6.2 The case of general weights . 65

7 The challenges and uses of experimental algorithms 67

References 76

5

Chapter 1

Introduction

1.1 A simple example

We begin by introducing our triple symbol in the simplest setting. All the notation used
here will be fully defined in the body of this thesis.

Let f, g, h be three cuspidal eigenforms over Q of weight 2, level N and trivial char-
acters. Fix a prime p and assume that p6 |N . Let αf and βf be the roots of the Hecke
polynomial

x2 − ap(f)x+ p.

Assume that the modular form f is regular at p, i.e. that αf and βf are different. Assume
as well that f is ordinary at p, i.e. that one of the roots of x2 − ap(f)x + p, say αf , is a
p-adic unit. Define the following two modular forms:

fα(q) := f(q)− βff(qp);

fβ(q) := f(q)− αff(qp).

We call fα and fβ the p-stabilizations of f . They have level pN , and are eigenforms for
the Up operator with respective eigenvalues αf and βf . Since we assumed that αf is a
unit, it is customary to call fα the ordinary p-stabilization of f . Define the following
Euler factors:

E(f, g, h) := (1− βfαgαhp−2)(1− βfαgβhp−2)(1− βfβgαhp−2)(1− βfβgβhp−2);

Ẽ(f, g, h) := (1− αfαgαhp−2)(1− αfαgβhp−2)(1− αfβgαhp−2)(1− αfβgβhp−2);

E0(f) := 1− β2
f p
−1; Ẽ0(f) := 1− α2

f p
−1;

E1(f) := 1− β2
f p
−2; Ẽ1(f) := 1− α2

f p
−2.

(1.1)

Let λfγ be the projection over fγ; it is the unique Hecke-equivariant linear functional
that factors through the Hecke eigenspace associated to fγ and is normalized to send fγ
to 1 (cf. Definition 2.7 in [Loe18]). Let d := q d

dq be the Serre differential operator and
ωf := f(q)dq

q
the differential associated to f . Consider the quantity

〈ωf , φ(ωf)〉
p

(
E1(f)

E(f, g, h)
βf λfα

(
d−1(g[p])× h

)
+
Ẽ1(f)

Ẽ(f, g, h)
αf λfβ

(
d−1(g[p])× h

))
,

(1.2)

6

where 〈·, ·〉 is the Poincaré pairing and φ is the Frobenius map. It turns out that this
quantity is independent – up to a sign – of the order of f, g and h. This result is
particularly surprising since the quantity in (1.2) does not appear to be symbolically
symmetric in f, g and h. This will fit into the framework of this thesis, as we relate this
quantity to the image of certain diagonal cycles under the p-adic Abel-Jacobi map.

The above can even be generalized to modular forms of higher weight and any char-
acters satisfying χfχgχh = 1, which we will do in Section 4.2. In that case, one needs to
adjust the Euler factors from (1.1) and introduce an extra factor and some twists by χ−1

f

in (1.2). One would also require that the weights be balanced, i.e. that the largest one is
strictly smaller than the sum of the other two.

In order to explicitly calculate (1.2), for modular forms of general weight, we need
certain computational tools, namely being able to compute ordinary projections of nearly
overconvergent modular forms, as well as projection over the slope α subspace for α not
necessarily zero. In [Lau14] (see also [Lau11]), the author describes an algorithm allowing
the calculation of ordinary projections of overconvergent modular forms. We introduce
here improvements to this algorithm, allowing us to accomplish the aforementioned tasks.
The use of this new algorithm is not restricted to this work. The experimental calculations
detailed in Chapter 5, on the symmetry of (1.2), provide additional support to the fact
that our algorithm is functioning properly.

An additional application of our code is the calculation of certain periods of modular
forms. Indeed, using the symmetry of our new p-adic triple symbol, introduced in Section
4.2, we explain how one can use our algorithms to compute the Poincaré pairing Ωf :=
〈ωf , φ(ωf)〉, where φ denotes the Frobenius action and f is a newform of any weight. See
[DL21], [DLR16] and Section III.5 of [Nik11] for instances where this pairing appears in
the literature. There are currently no known ways of evaluating general Poincaré pairings,
and the value of Ωf has so far only been computed in cases where f has weight 2 using
Kedlaya’s algorithm [Ked01].

1.2 Structure of the thesis

We now describe the structure of the thesis. It is divided as follows.

In Chapter 2, we find it relevant to mention certain theoretical aspects of (classical)
modular forms. Indeed, one of the best ways of studying p-adic modular forms is to relate
them to classical modular forms. We thus describe the various ways one can view them.
We also discuss the Up operator and the slope decomposition it induces.

In Chapter 3, we recall a known algorithm to compute projections of modular forms,
as our ultimate goal is to compute certain p-adic triple symbols. We expand on the known
algorithm and generalize it. Some of the methods that we will describe are due to David
Loeffler. In particular, the approaches used in Sections 3.1.3 and 3.2 were suggested by
him.

In Chapter 4, we recall the Rankin-Garrett triple product p-adic L-function. We then,
inspired by it, define a p-adic symbol for triples of modular forms. In the remainder of
the chapter, we study the symmetry properties of our new p-adic symbol, both when the
first variable is fixed and when all three inputs are allowed to vary. We also explain why
our symbol cannot satisfy full symmetry in the case of odd weights.

7

Chapter 5 is dedicated to presenting our numerical results, which support both our
formulas and the well-functioning of our algorithms. We make sure to include varied
examples; in particular we include examples of overconvergent modular forms as well as
nearly overconvergent modular forms. We also include forms of non-trivial character and
odd weight.

In Chapter 6, we present a curious application of our algorithms. Indeed, we can
exploit the symmetry result for our p-adic triple symbol to compute Poincaré pairings of
the form 〈ωf , φ(ωf)〉. Such pairings are p-adic analogs of the Petersson norm, and have
so far only been computed in the case where f is a cuspidal newform of weight 2 over Q.
We show how to compute them in the case where f can have any weight.

In Chapter 7, we discuss some aspects of research in computational number theory
that are often not mentioned in research papers. Indeed, in this section of the thesis, we
take the time to discuss some issues that arose at the interface of experimental calculations
and theoretical research. We explain how experimental calculations can be a valuable tool
to help guide and confirm theoretical beliefs, by giving examples from the author’s own
experience while conducting the research presented in this thesis.

8

Chapter 2

Preliminaries

2.1 Modular forms

2.1.1 Classical Modular forms

Modular forms are usually defined in the following way (cf. [DS05, DI95, Dar04]), which
lends itself well to computations. To this end, it is convenient to introduce the slash
notation for a complex valued function f on the upper half plane H:

(f |kγ)(τ) = (cτ + d)−kf(γτ), (2.1)

for all γ =

[
a b
c d

]
∈ SL2(R), where k is an integer.

The factor of (cτ + d)−k appearing in (2.1) is called a factor of automorphy. We shall
denote it by jk(γ, τ). It is a holomorphic function from SL2(Z)×H to C×, satisfying the
cocycle relation:

jk(γ1γ2, τ) = jk(γ1, γ2τ)jk(γ2, τ).

We are now ready to define modular forms of weight k and level Γ, where Γ is a finite
index subgroup of SL2(Z).

Definition 2.1.1 (Modular forms, Version 1). A modular form f of weight k and level
Γ is a holomorphic function f : H → C such that (f |kγ)(τ) = f(τ) for all γ ∈ Γ and all
τ ∈ H. Moreover, we require that for all γ ∈ SL2(Z), there exists some h ∈ N such that
f |kγ has a Fourier expansion

(f |kγ)(τ) =
∑
n≥0

an(γ)(q1/h)n,

where q = e2πiτ .

In practice, the main levels Γ ⊆ SL2(Z) that one considers are

Γ(N) :=

{
M ∈ SL2(Z) : M ≡

[
1 0
0 1

]
mod N

}
,

9

Γ1(N) :=

{
M ∈ SL2(Z) : M ≡

[
1 ∗
0 1

]
mod N

}
,

Γ0(N) :=

{
M ∈ SL2(Z) : M ≡

[
∗ ∗
0 ∗

]
mod N

}
,

for N ∈ N. The subgroups Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z) are singled out as they are
directly related to the reduction map

SL2(Z)
mod N

−−−−−→ SL2(Z/NZ).

Indeed, Γ(N) arises as the kernel of the above reduction map, Γ0(N) is the preimage of
the Borel subgroup (i.e. the subgroup of upper triangular matrices) and Γ1(N) is the
preimage of the subgroup of upper triangular matrices with 1s on the diagonal. We also
see in Remark 1 that these groups have specific roles and can be interpreted in certain
meaningful ways. We will therefore always assume that the level Γ of a modular form is
one of Γ(N),Γ1(N),Γ0(N), for N ∈ N.

Definition 2.1.1 has the advantage of being direct, simple and easy to use for compu-
tations. However, it is not the best conceptual way to view modular functions, especially,
when trying to prove theoretical results about them, or generalize their construction to
arbitrary number fields.

Indeed, let us introduce the concept of level Γ structure (see Chapter 3 in [KM85] for
more on this). This will encode the interaction between the subgroup Γ and the modular
forms. Then, we’ll be able to define modular forms in a more conceptual way.

Definition 2.1.2. Let E be an elliptic curve over some base ring R (or over a base
scheme S, if we want to be more general) and let Γ be one of Γ(N),Γ1(N),Γ0(N) for
N ∈ N which is invertible in R. We say that α is a level Γ structure on E if it is

• an isomorphism of R-group schemes α : (Z/NZ)2 ∼−→ E[N], if Γ = Γ(N);

• an injective homomorphism α : Z/NZ ↪→ E[N], if Γ = Γ1(N);

• a cyclic isogeny α : E −→ E ′ of degree N , to some elliptic curve E ′, if Γ = Γ0(N).

In the literature, level Γ(N) structures, level Γ1(N) structures and level Γ0(N) structures
are sometimes refer to as full level N structures, arithmetic level N structures and Borel
level N structures, respectively (see [KM85] and [Gou88]).

Remark 1 (See pages 37-38 in [DS05]). A full level Γ(N) structure is equivalent to giving
a (Drinfeld) basis (P,Q) for E[N], i.e. a pair (P,Q) that generates E[N] and has Weil
pairing eN(P,Q) = e2πi/N . An arithmetic level Γ1(N) structure is equivalent to giving a
fixed point of exact order N on E. Finally, a level Γ0(N) structure is equivalent to giving
a cyclic subgroup of E order N . See also Theorem 1.5.1 in [DS05] for more.

Recall now, from the theory of elliptic curves, the fact that isomorphism classes of
elliptic curves over C are classified by homothety classes of lattices, which in turn are also
classified by the complex upper half plane modulo the action of integer linear fractional
transformations. This gives the following bijections:

SL2(Z)\H ∼←→ {lattices Λ ⊆ C up to homothety}

10

∼←→ {elliptic curves E/C up to isomorphism}.

Moreover, if we look at lattices in C, not up to homothety, it turns out that they also
classify elliptic curves up to isomorphism with the additional structure of a non-vanishing
differential. Indeed,

{lattices Λ ⊆ C} ∼←→
{

elliptic curves E up to isomorphism
with a non-vanishing differential ω

}
.

Λ 7−→ (EΛ := C/Λ = (℘Λ(z), ℘′Λ(z)) , ωΛ := dz) ,

where
℘Λ(z) :=

1

z2
+

∑
x∈Λ−{0}

1

(z − x)2
− 1

x2

is the Weirestrass ℘ function, allowing us to transition from lattices Λ to elliptic curves
EΛ.

Finally, with this in mind, we can look back at Definition 2.1.1 and see that the domain
of modular functions can be equivalently thought of as just being the set of elliptic curves
up to isomorphism with a non-vanishing differential and a certain regularity under the
action of Γ (which can be encoded via level Γ structures). This helps understand where
the following more abstract definition of modular forms comes from.

Definition 2.1.3 (Modular forms, Version 2). A modular form f over C of weight k
and level Γ is a holomorphic (at the cusps) complex valued function f(E,ω, ι) on “test
objects” (E,ω, ι) where E is an elliptic curve over some C-algebra A, ω is a non vanishing
differential on E, and ι is level Γ structure on E, such that f(E,ω, ι)

(i) only depends on the isomorphism class of (E,ω, ι);

(ii) commutes with arbitrary change of base (of the field/ring on which E is defined);

(iii) is homogeneous of degree −k in its second variable, i.e. f(E, λω, ι) = λ−kf(E,ω, ι).

Remark 2. To be completely rigorous, we need to point out that given a test object
(E,ω, ι) and an isomorphism of elliptic curves ρ : E −→ E ′, we get a new test object
(E ′, ω′, ι′), where ω′ is the pushforward of ω through ρ and ι′ is obtained by composing
ι with ρ (or ρ∨) in an appropriate way, depending on which Γ ⊆ SL2(Z) we are dealing
with.

The advantage of this definition is that it easily generalizes to any base scheme S,
rather than always taking C. This is the approach taken by Katz when he introduced
overconvergent modular forms. We will see this in Definition 2.1.5 of Section 2.1.2.

Up until now, we have see modular forms as functions on H that transform nicely
when acted upon by Γ ⊆ SL2(Z). We can alternatively view them as functions on
H/Γ, but with some more structure to compensate for the fact that their domain is now
H/Γ instead of H. This gives us this last definition, where we view modular forms as
being sections of line bundles. There will be complications when dealing with the case
Γ = Γ0(N). Indeed, Γ0(N) is not a torsion free subgroup of SL2(Z), as it contains the
matrix −Id for all N . This will cause issues when considering universal modular curves.

11

In contrast, the curves obtained from compacting H/Γ1(N) and H/Γ(N) already come
with a universal modular curve (at least for N > 4 and N ≥ 3 respectively).

First, we define the Hodge line bundle L k
Γ on Γ\H as follows. Recall that all line

bundles on C must be trivial because C is contractible. We can then take the trivial line
bundleH×C→ H onH and reduce it modulo Γ via the action (τ, t) 7→ (γ ? τ, t · jk(γ, τ)),
as in Figure 2.1. This line bundle is completely determined by the factor of automorphy
jk(γ, τ), which in turn depends precisely on the weight k and the level Γ.

Figure 2.1: The Hodge line bundle L k
Γ on Γ\H.

Let H∗ := H t P1(Q) and consider the compactification Γ\H∗ of Γ\H. We are now
ready to view modular forms of weight k and level Γ as being global sections of the Hodge
line bundle L k

Γ over Γ\H∗, since one can extend the Hodge line bundle from Γ\H to
Γ\H∗ when Γ is sufficiently small (see Remark 4.5 in [Gor02]). This is equivalent to
saying that they are holomorphic functions f on H such that f(γτ) = jL k

Γ
(γ, τ)f(τ),

where jL k
Γ

= jΓ,k is the factor of automorphy associated to the bundle L k
Γ .

Definition 2.1.4 (Modular forms, Version 3). A modular form of weight k and level Γ
is an element of H0

(
X (Γ),L k

Γ

)
, where X (Γ) := Γ\H∗ denotes the compactification of

the modular curve Γ\H and L k
Γ is the Hodge line bundle on X (Γ).

When Γ is torsion free, instead of taking the Hodge line bundle L k
Γ , we can use a

more general approach based on the differentials naturally associated to the modular
curve Γ\H. Indeed, let ẼΓ := {(τ, x) : τ ∈ H, x ∈ C/(Z ⊕ Zτ)}. Then the group
Γ acts on ẼΓ via (τ, x) 7→ (γτ, jΓ,k(γ, τ)−1x). This allows us to define the universal
elliptic curve EΓ := Γ\ẼΓ of level Γ. Now, let π : EΓ −→ Γ\H be the natural projection
and let ω := π∗ΩEΓ be the pushforward onto Γ\H of the (sheaf of relative) differentials
on EΓ. We finally obtain the line bundle of differentials ω⊗k on Γ\H. We then have
H0
(
X (Γ),L k

Γ

)
= H0

(
X (Γ), ω⊗k

)
.

Note also that the above definition makes sense because one can chose an appropriate
extension of the bundle ω⊗k from Γ\H to Γ\H∗ (see Section 4 of [Gor02] for more on this).
The set of modular forms of weight k and level Γ is denoted byMk(Γ). Some authors also
consider the set of modular forms that are meromorphic at the cusps but not necessarily
holomorphic and denote it by Fk(Γ). We will call Fk(Γ) the set of meromorphic modular

12

forms of weight k and level Γ to avoid any confusion. So, we would have

Mk(Γ) = H0
(
Γ\H∗,L k

Γ

)
, Fk(Γ) = H0

(
Γ\H,L k

Γ

)
.

Definition 2.1.1 of a modular form makes it clear how we can get a Fourier expansion
out of a modular form. The other two definitions are a bit more abstract. To see how this
is possible, we use a parametrization of the set of elliptic curves (which modular forms
can take as inputs, see Definition 2.1.3) by complex numbers via the isomorphism

C/(Z⊕ τZ)
∼−→ C×/qZ,

where q := e2πiτ . As a consequence, we obtain a parametrization T (q) giving us an
elliptic curve for each q = e2πiτ . We refer to T (q) as the Tate curve (cf. Theorem V.1.1
in [Sil94]). Then, for a modular form f as in Definition 2.1.3, we define its q-expansion
(at the ∞ cusp) as

f(q) := f (T (q), ωcan) ∈ C[[q]].

The reason why f(q) lies in C[[q]] instead of C((q)) is that modular forms have to be
holomorphic at the cusps in our definitions, so in particular they will be holomorphic at
the cusp ∞.

2.1.2 Overconvergent and p-adic modular forms

Fix a prime p and a finite extension K of Qp and let B := OK be its ring of integers. We
can actually take B to be any p-adic ring, i.e. a complete separated Zp-algebra with the
p-adic topology. Overconvergent modular forms can be thought of as being modular forms
with extra convergence conditions. We will make this idea more precise. Just like for
classical modular forms (see Definitions 2.1.3 and 2.1.4), we can view them as functions
on test objects (cf. [Gou88, Kat73, Kat75]) or as sections of certain line bundles. Here,
test objects of level Γ and growth condition r ∈ B are tuples (E/A, ω, ι, Y), where E is
an elliptic curve over some B-algebra A together with a non-vanishing differential ω and
a level Γ structure ι. Also, Y will just be some element of A such that Y ·Ep−1(E,ω) = r.
By Ep−1, we mean the normalized Eisenstein series of weight p− 1. The level structures
that we will consider here will be for the subgroups Γ(N),Γ1(N),Γ0(N) of SL2(Z) with
N ∈ N such that p6 |N .

Definition 2.1.5 (Overconvergent modular forms, Version 1). A p-adic modular form f
of weight k, level Γ and growth condition r is a function that is holomorphic at the cusps
(see Remark 3 below) sending each objects (E/A, ω, ι, Y) of level Γ and growth condition
r to f(E/A, ω, ι, Y) ∈ A such that f(E/A, ω, ι, Y)

(i) only depends on the isomorphism class of (E,ω, ι, Y);

(ii) commutes with arbitrary change of base (of the ring on which E is defined);

(iii) is homogeneous of degree −k in its second variable, i.e.

f(E/A, λω, ι, Y) = λ−kf(E/A, ω, ι, Y).

13

Remark 3. In the above definition, and throughout this thesis, we mention p-adic modular
forms f that are holomorphic at the cusps. For instance, when the (usual) q-expansion
of f(q) lies in B[[q]], instead of just B((q)), we say that f is holomorphic at the cusp ∞.
In general, one can consider the q-expansion of f at any cusp. If every such expansion
lies in B[[q]], then we say that f is holomorphic at the cusps. We will explain how to get
such q-expansions at the end of this subsection.

The space of p-adic modular form f of weight k, level Γ and growth condition r is
denoted by Mp-adic

k (B,Γ; r). We might often drop the B when it is clear which space we
are working with. Usually, we will have B := Zp. In the case where r is not a unit,
r 6∈ B×, we say that we have an overconvergent modular form of weight k, level Γ and
growth condition r. We denote this space by Moc

k (B,Γ; r). We will see at the end of
this section how to define the vector space of overconvergent modular forms Moc

k (K,Γ; r)
defined over the field K.

We can also similarly to the last section define overconvergent modular forms as
sections of line bundles. This task is a bit more subtle now. For example, if p = 3, we
would have to take the 3rd power of A instead of A in what follows (cf. Theorem 1.8.1 in
[Cal13]). Assume henceforth that p ≥ 5, in order to simplify the following construction.
We define X (Γ)≤r to be the rigid analytic space (cf. [Bos09, Bos14]), over K, that is
given by the set of points x of the compactified moduli scheme (over B) of elliptic curves
with a level Γ structure such that ordp(Ã (x)) ≤ ordp(r), where Ã (x) is a lift of the
Hasse invariant A at x. For simplicity, we will ignore the distinction between a rigid
analytic space and its underlying set of closed points. It is know that the Hasse invariant
vanishes precisely on supersingular elliptic curves. Thus, we can think of X (Γ)≤r as being
just like X (Γ) but with balls of radius |r|p removed around the supersingular points. In
particular, if ordp(r) = 0 (i.e. r is invertible) then we get the ordinary “locus” X (Γ)ord

composed of all the ordinary elements in X (Γ).

Just like for classical modular forms, the space X (Γ)≤r has a set of differentials ω
on it. They come from (the pushforward of) the holomorphic differential forms on the
universal elliptic curve over B.

Definition 2.1.6 (Overconvergent modular forms, Version 2). An overconvergent modu-
lar form of weight k, level Γ(N) and growth condition r is a section of H0

(
X (Γ)≤r, ω

⊗k).
So we have

Moc
k (K,Γ; r) = H0

(
X (Γ)≤r, ω

⊗k) .
One can give an analogue of the above definition for overconvergent modular forms

defined over B. To do so, we would need however to define an integral version of X (Γ)≤r.
See, for example, the remark at the bottom of page 6 in [Gou88] for more on how to do
this.

Let Ep−1 denote the normalized Eisenstein series of weight p − 1 (and level 1). For
N ≥ 3, p ≥ 5 and r ∈ B×, we have an isomorphism (cf. Theorem 6.15 in [Gor02])
expressing them in terms of an inverse limit of classical objects

Moc
k (B,Γ; r) ∼= lim←−

n

(
H0

(
X (Γ)/Zp ,

∞⊕
j=0

ωk+j(p−1)

)
⊗Zp (B/pnB)

)/
(Ep−1 − r) ,

where X (Γ)/Zp denotes the compactified moduli scheme over Zp of elliptic curves with a

14

level Γ structure and ω denotes the differentials onM(Γ). This translates to

Moc
k (B,Γ; r) ∼= lim←−

n

(
∞⊕
j=0

Mk+j(p−1)(B/p
nB,Γ)

)/
(Ep−1 − r) .

These definitions don’t help us very much in terms of computations, as they are
quite abstract. Thankfully, there is a convenient and computationally-friendly way of
dealing with them. We will find a “Banach” basis forMoc

k (B,N ; r), allowing us to express
overconvergent modular forms as series in classical objects. Actually, we will find a
“Banach” basis for Mp-adic

k (B,N ; r), i.e. r doesn’t need to be non-invertible. We will thus
rely on classical modular forms to build the overconvergent ones.

First, assume for simplicity that p ≥ 5 and does not divide N . When we write
Mk(B,N), we mean the space of modular forms over B of weight k and arithmetic level
structure N , i.e. level structure Γ1(N). Note also that we have

Mk(B,N) = Mk(Zp, N)⊗Zp B.

Notice that the map

Mk+(i−1)(p−1)(B,N) ↪→Mk+i(p−1)(B,N)

f 7→ Ep−1 · f

is injective but not surjective for all i ≥ 1. It also has a finite free cokernel ([Kat73],
Lemma 2.6.1), so it must split. We can then, following Gouvêa’s notation (see Chapter
I of [Gou88]), let Ak+i(p−1)(B,N) be a free B-module such that

Mk+i(p−1)(B,N) = Ep−1 ·Mk+(i−1)(p−1)(B,N)⊕ Ak+i(p−1)(B,N).

For i = 0, let Ak(B,N) := Mk(B,N). We also have

Ak+i(p−1)(B,N) = Ak+i(p−1)(Zp, N)⊗Zp B.

We can think of Ak+i(p−1)(B,N) as the set of modular forms of weight k + i(p− 1) that
do not come from smaller weight forms multiplied by Ep−1. We notice that we can write

Mk+i(p−1)(B,N) = Ep−1 ·Mk+(i−1)(p−1)(B,N)⊕ Ak+i(p−1)(B,N)

= Ep−1 ·
(
Ep−1 ·Mk+(i−2)(p−1)(B,N)⊕ Ak+(i−1)(p−1)(B,N)

)
⊕ Ak+i(p−1)(B,N)

...

=
i⊕

a=0

Ei−a
p−1 · Ak+a(p−1)(B,N).

We are now ready to give an equivalent definition for the space of r-overconvergent
modular forms.

Definition 2.1.7 (Overconvergent modular forms, Version 3). The space of overconver-
gent modular forms of weight k, growth condition r and level Γ1(N) is given by

Moc
k (N ; r) :=

{
∞∑
i=0

ri
bi

Ei
p−1

: bi ∈ Ak+i(p−1)(N), lim
i→∞

bi = 0

}
, (2.2)

where by limi→∞ bi = 0, we mean that the expansion of bi is more and more divisible by
p as i goes to infinity.

15

Remark 4. If we take r to be invertible in equation (2.2), we will just get Mp-adic
k (N ; r).

Moreover, we can also define overconvergent modular forms with a given character χ. To
do so, we simply take

Moc
k (N,χ; r) :=

{
∞∑
i=0

ri
bi

Ei
p−1

: bi ∈ Ak+i(p−1)(N,χ), lim
i→∞

bi = 0

}
.

Where Ak+i(p−1)(N,χ) is define analogously to Ak+i(p−1)(N) by

Mk+i(p−1)(B,N, χ) = Ep−1 ·Mk+(i−1)(p−1)(B,N, χ)⊕ Ak+i(p−1)(B,N, χ).

An expansion for f ∈Mp-adic
k (B,N, χ; r) of the form f =

∑∞
i=0 r

i bi
Eip−1

is called a Katz
expansion and we call r the growth condition. This way of writing them shows how they
can be seen as being overconvergent, i.e. they “converge faster than standard classical
modular forms” (in the p-adic topology).

Remark 5. Some authors (see [Urb14]) might use the notation Moc
k (B,N, χ;α) to mean

Moc
k (B,N, χ; pα). This is because we don’t really care much about what r actually is;

we only care about its p-adic valuation. Indeed, if r = pα · c with p6 |c, then we can
write f =

∑∞
i=0 r

i bi
Eip−1

as f =
∑∞

i=0 p
αi c·bi
Eip−1

. If we ever use the notation Moc
k (B,N, χ;α)

instead of Moc
k (B,N, χ; pα) here, we will make it clear.

We can also talk about the space of all overconvergent modular forms Moc
k (B,N, χ)

without specifying the growth condition,

Moc
k (B,N, χ) :=

⋃
r 6∈B×

Moc
k (B,N, χ; r). (2.3)

Remember that we do not include units in the above definition because this will give us
p-adic modular forms that aren’t overconvergent (see Definition 2.1.5). If we did allow r
to also be invertible, we would obtain the set of all p-adic modular forms over B of level
Γ1(N) and integer weight k and any growth condition,

Mp-adic
k (B,N, χ) :=

⋃
r∈B

Moc
k (B,N, χ; r).

If r = r0r1, we then have an inclusion

Moc
k (B,N, χ; r) ↪→Moc

k (B,N, χ; r0),
∞∑
i=0

ri
bi

Ei
p−1

7→
∞∑
i=0

ri0
(ri1bi)

Ei
p−1

.
(2.4)

In particular, letting r = 1, or any unit, we see that the space of p-adic modular
forms of growth condition 1 is equal to the space of p-adic modular forms of any growth
condition, i.e. Mp-adic

k (B,N, χ; 1) = Mp-adic
k (B,N, χ). And we also see that overconvergent

modular forms are also p-adic modular forms:

Moc
k (B,N, χ) ⊆Mp-adic

k (B,N, χ).

16

Thanks to (2.4), the union in Equation (2.3) can be rewritten more appropriately as a
direct limit

Moc
k (B,N, χ) := lim

−→
ordp(r)>0

Moc
k (B,N, χ; r).

In [Ser73], Serre gives a different definition of p-adic modular forms, based on limits of
q-expansions of classical modular forms. To be specific, we say f =

∑
n anq

n is the limit
of the sequence fi =

∑
n a

(i)
n qn if valp(f − fi) → ∞ as i → ∞, where valp (

∑
n anq

n) :=
infn valp(an). Note that according to this general definition p-adic modular forms need
not have integer weights. Indeed, the set of weights is

HomConts(Z×p ,Z×p) = AutConts(Z×p) ∼= Z×p ∼= Z/(p− 1)Z× Zp,

for p 6= 2.

Definition 2.1.8 (p-adic modular forms à la Serre). The space of p-adic modular forms
of all weights in HomConts(Z×p ,Z×p), denoted by Mp-adic(B,Γ), is the completion of the
space of classical modular forms

⋃
k∈ZMk(B,Γ).

This definition is very simple to state. On the other hand, the space of p-adic modular
forms of any weight, in HomConts(Z×p ,Z×p), has a very complicated structure and is quite
difficult to study. It is therefore common to restrict ones attention to overconvergent
modular forms instead, i.e. to exclude the case ordp(r) = 0, as this will give non-
overconvergent p-adic modular forms.

We now introduce the Serre operator q d
dq , which is often denoted by Θ,

q
d
dq

: Mp-adic
k (B,Γ1(N)) −→Mp-adic

k+2 (B,Γ1(N))∑
n

anq
n 7→

∑
n

nanq
n.

(2.5)

This operator does not necessarily preserve overconvergence in general. We do have
a special case proven by Coleman:

Theorem 2.1.9 (Theorem 2, [CGJ95]). Let k ≥ 1 and f ∈ Moc
1−k(B,Γ1(N)). Then,(

q d
dq

)k
f ∈Moc

1+k(B,Γ1(N)).

We finish this subsection by explaining that, similarly to classical modular forms over
C, we can write q-expansions for overconvergent modular forms. We do so by using
a version of the Tate curve, which we also denote by T (q), that is defined over OK
(cf. Theorem V.3.1 in [Sil94] or Section VII in [DR73]). Indeed, for an overconvergent
modular form f of weight k, level Γ and growth condition r as in Definition 2.1.5, we
define its q-expansion (at the ∞ cusp) as

f(q) := f

(
T (q), ωcan, ιcan,

r

Ep−1 (T (q), ωcan)

)
∈ B[[q]]. (2.6)

One can also define an analog of the above q-expansion of f for every cusp (cf. Section 6.2
in [Gor02]). If every such q-expansion of f lies in B[[q]] instead of B((q)), we say that f is

17

holomorphic at the cusps. Moreover, as the Tate curve T (q) is ordinary, Ep−1 (T (q), ωcan)
must be invertible in Equation (2.6).

Finally, we generalize the definition of overconvergent modular forms to extensions K
of Qp, instead of just rings of integers B = OK . We simply take

Moc
k (K,Γ; r) := Moc

k (B,Γ; r)⊗B K.

We endow the spaceMoc
k (K,Γ; r) with the p-adic topology by specifying thatMoc

k (B,Γ; r)
will be the unit ball in Moc

k (K,Γ; r). This turns Moc
k (K,Γ; r) into a p-adic Banach space.

2.1.3 Nearly overconvergent modular forms

Nearly overconvergent modular forms are a generalization of overconvergent modular
forms, but they still are instances of p-adic modular forms. In recent work of Darmon
and Rotger (cf. [DR14]) as well as Urban (cf. [Urb14] and Appendix II of [AI21]),
definitions for nearly overconvergent modular forms are given. We will specifically follow
Section 3.2 of [Urb14], and direct the reader to read more of [Urb14] for the full details
and complete definitions.

Definition 2.1.10 (Nearly overconvergent modular forms). The space of nearly overcon-
vergent modular forms of weight k, level Γ, growth condition r ∈ B and order of near
overconvergence less or equal to s ∈ Z≥0 is given by

Mn-oc
k (B,Γ; r; s) = H0

(
X (Γ)≤r, ω

⊗(k−s) ⊗ Syms(H1
dR)
)
,

where H1
dR is more precisely defined in Section 2.2 of [Urb14]. We also define the space of

nearly overconvergent modular forms of weight k, level Γ, order of near overconvergence
less or equal to s ∈ Z≥0 and unspecified growth condition by

Mn-oc
k (B,Γ; s) = lim

−→
ordp(r)>0

Mn-oc
k (B,Γ; r; s).

In particular, when s = 0 we retrieve the usual definition of overconvergent modular
forms. The above definition allows us to get the inclusions

Moc
k (B,Γ1(N); r) ⊆Mn-oc

k (B,Γ1(N); r; s) ⊆Mp-adic
k (B,Γ1(N))

for all r and s. Indeed, this follows from the fact that there is a canonical projection

ω⊗(k−s) ⊗ Syms(H1
dR) −→ ω⊗k.

Definition 2.1.10 has the advantage of being very conceptual and abstract. It also
mimics the definition of overconvergent modular forms very closely (see Definition 2.1.6).
However, as a consequence, it is hard to use in many practical cases. We therefore give an
applied characterization of nearly overconvergent modular forms that makes them easier
to grasp.

Recall first the Eisenstein series Ek that give us modular forms (of level 1) and weight
k when k ≥ 4. If we take k = 2, the Eisenstein series E2 is still very interesting, even

18

though it isn’t a modular form. It is transcendental over the ring of overconvergent
modular forms (cf. [CGJ95]), so

Moc
k (B,Γ)(E2) ∼= Moc

k (B,Γ)(X), (2.7)

where X is a free variable. It turns out that E2 plays a useful role for giving an alternative
definition of nearly overconvergent modular forms.

Proposition 2.1.11 (Remark 3.2.2 in [Urb14]). Let f ∈ Mn-oc
k (B,Γ1(N); s) then there

exist overconvergent modular forms g0, g1, ..., gs with gi ∈Moc
k−2i(B,Γ1(N)) such that

f = g0 + g1E2 + ...+ gsE
s
2. (2.8)

By Proposition 2.1.11 and our above explanation (see Equation (2.7)), nearly over-
convergent modular forms are polynomials in E2 with overconvergent modular forms as
coefficients, so we can view them as elements of Moc

k (B,Γ1(N))(X). Recall that we also
can see them as being p-adic modular forms. Hence, on top of having a q-expansion in
B[[q]], they also have a polynomial q-expansion in B[[q]][X] (of degree less or equal to s,
where s is the order of near overconvergence) that comes from Equation (2.8). Consider
the operator δk taking as input nearly overconvergent modular forms of weight k defined
on their polynomial q-expansions as

(δkf)(q,X) := q
d
dq
f + kXf(q). (2.9)

Then δk sends forms of weight k to forms of weight k+2. Indeed, this is because the Serre
differential operator q d

dq increases the weight of its input by 2 as in (2.5). Remember that
this operator does not necessarily preserve overconvergence – the best result we have so
far regarding this is Theorem 2.1.9. Also, the kXf term on the right hand side of (2.9)
denotes kE2f , which also has weight k+ 2. Define as well the following iterated derivate:

δsk := δk+2s−2 ◦ δk+2s−4 ◦ ... ◦ δk.

Proposition 2.1.12 (Lemma 3.3.4 in [Urb14]). Let f be a nearly overconvergent modular
form of weight k and order less or equal to s such that k > 2s. Then for each i = 0, ..., s,
there exists a unique overconvergent form hi of weight k − 2i such that

f =
s∑
i=0

δik−2i(hi).

Propositions 2.1.11 and 2.1.12 allow us to think about nearly overconvergent forms as
having an overconvergent part in them. We define the overconvergent projection πoc of
f =

∑s
i=0 δ

i
k−2i(hi) by πoc(f) := h0.

Let us now conclude with the following picture of all the different spaces of modular
forms that we have seen:

19

Mp-adic(Qp,Γ)

Mp-adic
k (Qp,Γ)

Mn-oc
k (Qp,Γ; r; s)

Moc
k (Qp,Γ; r)

Mk(Qp,Γ) = Mk(Q,Γ)⊗Q Qp

Mk(Q,Γ).

2.2 The Up operator

2.2.1 Up acting on classical modular forms

Let Mk(Qp, N, χ) be the space of modular forms of level N , weight k and character χ
over Qp. We could have taken any fixed finite extension K of Qp actually, or its ring of
integers B = OK . As in the previous section, when we just say level N here, we mean
level Γ1(N). We might drop the Qp in the notation of Mk when the base field (or base
ring) is obvious. Let Sk(N,χ) be the subspace of Mk(N,χ) consisting of cusp forms.

We have the following operators acting on the space of (classical) modular forms: the
Hecke operator Tp, the Atkin operator Up, and the Frobenius operator V ,

Tp :
∑
n

anq
n 7→

∑
n

apnq
n + χ(p) pk−1

∑
n

anq
pn,

Up :
∑
n

anq
n 7→

∑
n

apnq
n,

V :
∑
n

anq
n 7→

∑
n

anq
pn.

(2.10)

The Hecke operator Tp acts on modular forms of level N , for p6 |N . The Atkin operator
Up acts on modular forms of level N , for p|N . And lastly, the Frobenius operator V takes
modular forms of level N to forms of level pN .

We can think of Up as collapsing the series or compressing it by removing a big portion
of its terms. On the other hand, V can be seen as spacing out a series by adding many
zeroes between its terms. In other words, the operator Up can be viewed as increasing
the convergence of a series; whereas V slows it down. This logic will be consistent with
the actions of Up and V on Moc

k (N,χ) as we will see next. We also notice that V is a
right inverse for Up and that V Up (

∑
n anq

n) =
∑

p|n anq
n. In particular, Up has no left

20

inverse, or else this left inverse would also have to be V . So,

UpV (f) = f, f [p] := (1− V Up)(f) =
∑
p 6 |n

anq
n. (2.11)

We call f [p] the p-depletion of f . Note that 1 − V Up is an idempotent operator and we
have the formula

Up(V (f) · g) = f · Up(g), (2.12)

which can be proven by looking at q-expansions. In particular, we see that Up is multi-
plicative when acting on the product of two forms where one of them is in the image of
the Frobenius map V .

We now discuss a common tool from linear algebra (particularly useful with infinite
dimensional spaces), namely the slope decomposition associated to a linear operator. We
are mainly interested in Up and will therefore introduce the notion of slope α subspace
for the Up operator.

The slope α subspace (whether it is for classical modular forms or for overconvergent
modular forms) is the generalized eigenspace of Up whose eigenvalues have p-adic valuation
α. In other words, it’s the space of forms f such that there is some integer r ∈ N and
some λ ∈ Qp with valuation ordp(λ) = α such that (Up − λId)r(f) = 0. The following is
an alternative definition from [Col97], relying on the concept of Newton polygons.

Definition 2.2.1. A modular form f is said to have slope α ∈ Q if there is a polynomial
R(T) ∈ Cp[T] such that R(Up)f = 0 and such that the Newton polygon of R(T) has only
one side and its slope is −α. We define the slope α subspace as the space of modular
forms of slope α.

In other words, a modular form f has slope α if R(Up)(f) = 0 for some polynomial
R(T) of the form R(T) = 1 +

∑deg(R)
i=1 riT

i such that there exists some N ≤ deg(R) with
valp(ri) ≥ −iα for all i < N and valp(ri) = −iα for all i ≥ N .
Example 1. If f is an eigenform of Up with eigenvalue c of valuation valp(c) = α, then
f is in Mk(N)slope α. Indeed, we can take R(T) := 1 − T/c such that R(Up)(f) = 0 and
R(T) has Newton polygon consisting of just one line of slope −α.

The action of Up on Mk(N) gives a Up-equivariant decomposition of the space of
modular forms into subspaces of different slopes,

Mk(N) =
⊕

α∈Q≥0∪{∞}

Mk(N)slope α,

where Mk(N)slope α denotes the subspace of modular forms of slope α. Essentially,
Mk(N)slope α is the generalized eigenspace of Up whose eigenvalues have p-adic valuation
α.

In the case α = 0, the modular forms of slope zero are said to be ordinary and we
denote this space by Mord

k (N). We now introduce Hida’s ordinary projection operator
(see Chapter 7.2 of [Hid93] for more details). It is defined as

eord := limUn!
p

and projects the entire space Mk(N) onto its subspace of ordinary forms Mord
k (N).

21

2.2.2 Up acting on p-adic modular forms

Let now Mp-adic
k (B,N) denote the space of p-adic modular forms of level N , weight k ∈ Z

over the ring of integers B of some finite extension of Qp, as defined in Section 2.1.2 (see
also [Ser73]). As in the above, we might drop the B in the notation of Mp-adic

k when the
base ring is obvious. This is an infinite dimensional space.

Since p-adic modular forms also have q-expansions just like classical modular forms,
we can let the operators Tp, Up and V act on Moc

k (N), using the same definitions as in
(2.10). There also exist definitions for Tp, Up and V where we view modular forms as
functions of elliptic curves with extra structure (test objects) rather than just letting Tp,
Up and V act on q-expansions. These definitions for Tp, Up and V are good for certain
conceptual aspects. However, we will not see them here as we are mainly concerned with
computational applications.

We will see that the Up operator, when acting on Mp-adic
k (B,N), isn’t very interesting

and we will then restrict the domain of Up to the space of overconvergent modular forms
Moc

k (B,N).

Indeed, we first notice that given any f ∈ Mp-adic
k (B,N) = Mp-adic

k (B,N ; 1), we can
define a new modular form

f0 := f [p] := (1− V Up)(f)

that lies in ker(Up). Moreover, given any f0 ∈ ker(Up) (which we just saw how to create
out of any f ∈ Mp-adic

k (B,N)) and any λ ∈ B with ordp(λ) > 0, we can define a new
p-adic modular form

fλ := f0 + λV (f0) + λ2V 2(f0) + λ3V 3(f0) + ...

This p-adic modular form is well defined as the above series converges (because ordp(λ) >
0). We thus get an eigenform fλ for Up of eigenvalue λ.

Therefore, we can conclude that ker(Up) ∼= ker(Up − λ) for all λ in the maximal ideal
of B (i.e. such that ordp(λ) > 0). Note as well that this construction ensures that f, f0, fλ
have the same q-expansion outside of (p), i.e.

an(f) = an(f0) = an(fλ)

whenever p6 |n.

2.2.3 Up acting on overconvergent modular forms

We now restrict our attention to the spaceMoc
k (Qp, N) of overconvergent modular forms of

level N , weight k and character χ over Qp, as defined in Section 2.1.2 (see also [Kat73]).
As in the above, we might drop the Qp in the notation of Moc

k when the base field is
obvious. This is an infinite dimensional space, but it is not as big as Mp-adic

k (Qp, N).

As we have seen above for p-adic modular forms, overconvergent modular forms also
have q-expansions, and we can let Tp, Up and V act onMoc

k (N), using the same definitions
as in (2.10). We will see here the action of Up on Moc

k (N) will be much more interesting
than its action on Mp-adic

k (N).

22

First of all, note that Up doesn’t necessarily preserve the growth conditions of an
overconvergent modular form. However, if we restrict our attention to the case 0 <
ordp(r) < 1

p+1
, then we have an inclusion

p · Up : Moc
k (B,N ; r) ↪→Moc

k (B,N ; rp),

f 7→ p · Up(f),

as in Lemma 3.11.4 of [Kat73]. So Up (Moc
k (B,N ; r)) ⊆ 1

p
Moc

k (B,N ; rp). Combining this
with the fact that Moc

k (B,N ; rp) ⊆ Moc
k (B,N ; r) via the map in (2.4), we can view the

Atkin operator Up as an endomorphism of Moc
k (K,N ; r) when 0 < ordp(r) < p

p+1
. Of

course, Up can always be seen as an endomorphism of Mp-adic
k (B,N ; 1).

Note that we had to tensor Moc
k (B,N ; r) with K to get that Up can be viewed as an

endomorphism of Moc
k (K,N ; r). In addition, in this case, Up is a completely continuous

endomorphism. Hence, we can apply p-adic spectral theory, as in [Ser62]. We therefore
obtain that the Atkin operator Up will induce a decomposition (as in Section 2 of [Wan98]),
for all α ∈ Q≥0 ∪ {∞}, on the space of overconvergent modular forms

Moc
k (K,N ; r) = Moc

k (K,N ; r)slope α ⊕Xα, (2.13)

whereMoc
k (K,N ; r)slope α is the finite dimensional space of overconvergent modular forms

in Moc
k (K,N ; r) of slope α. If we further assume an infinite slope version of the spectral

expansion conjecture (cf. [GM95]), we would obtain

Moc
k (K,N ; r) =

⊕̂
α∈Q≥0∪{∞}

Moc
k (K,N ; r)slope α, (2.14)

for ordp(r) ∈
(

1
p+1

, p
p+1

)
, where ⊕̂ denotes the completed direct sum. Note that partial

results towards the spectral expansion conjecture have been obtained in [Loe07] when
p = 2. Similarly to classical modular forms, the overconvergent modular forms of slope
zero are said to be ordinary and we denote this space byMoc,ord

k (N). Actually, Coleman’s
classicality theorem (cf. [Col95]) states that any ordinary overconvergent modular form
of weight k ≥ 2 can be seen as a classical modular form of weight k on Γ1(N). Therefore,
when k ≥ 2, we can simply denote the ordinary overconvergent modular by Mord

k (N)
instead of Moc,ord

k (N).

Hida’s ordinary projection operator eord := limUn!
p also acts on p-adic modular forms

and in particular on overconvergent modular forms. Hida’s operator projects the entire
space Moc

k (N) onto its subspace of ordinary forms Moc,ord
k (N).

Following Darmon and Rotger in [DR14] (see Lemma 2.17), we notice that an(g[p] ×
(V h)) = 0 whenever p|n. This gives the following lemma, which is also a direct conse-
quence of equations (2.11) and (2.12).

Lemma 2.2.2. If g and h are p-adic modular forms, then g[p] × (V h) is in the kernel of
the Up operator, and in particular eord(g[p] × (V h)) = 0.

2.2.4 Up acting on nearly overconvergent modular forms

Consider now the space of nearly overconvergent modular forms. One can still define the
ordinary projection operator as eord := limUpn! , since this operator is actually defined for

23

any p-adic modular form in general. It turns out that the ordinary projection of a nearly
overconvergent modular form only depends on its overconvergent part.

Theorem 2.2.3 (Lemma 2.7 in [DR14]). Let F be a nearly overconvergent modular form,
then

eord(φ) = eordπoc(φ).

Thus, taking ordinary projections of nearly overconvergent modular forms reduces to
taking ordinary projections of overconvergent modular forms.

As explained in Section 3.3.6 of [Urb14] (see also Appendix II of [AI21] for Urban’s
erratum to [Urb14]), the Atkin operator Up is also completely continuous when viewed
as an endomorphism of Mn-oc

k (K,N ; r; s), for 0 < ordp(r) < 1
p+1

. Hence, we obtain a
decomposition of Mn-oc

k (K,N ; r; s) similar to that of Equation (2.13). This means that
we may also similarly speak of slope α projections eslope α(ψ) for nearly overconvergent
modular forms ψ.

For our work, we are interested in computing ordinary projections of overconvergent
modular forms (Section 3.1.2). But we will also consider computing ordinary projections
of nearly overconvergent modular forms (Section 3.1.3).

One could also be interested in taking projection over different slope spaces. What we
will focus on in Section 3.2 however, is how to take a projection over the space generated
by a particular element fα in the space of forms of slope α, instead of projecting over the
entire space of slope α.

2.3 The Poincaré pairing

To a cuspidal modular form φ =
∑

n an(φ)qn of weight two and level N , one can associate
a differential ωφ ∈ H1

dR(X1(N)) given by

ωφ = φ(q)
dq
q

=
∑
n

an(φ)qn
dq
q
. (2.15)

In general, given a modular form φ of weight r + 2 and level Γ1(N), one can associate
to it a differential ωφ ∈ Filr+1Hr+1

dR (Er/Cp), where E is the universal generalized elliptic
curve fibered over X1(N), and Er is the Kuga-Sato variety as in [Sch90]. In such a case,
writing down a closed formula for ωφ is possible, but more tricky and less simple that the
formula ωφ =

∑
n an(φ)qn dq

q
obtained in the weight 2 case. Indeed, we would get

ωφ(q) =
∑
n

an(φ)qnωrcan

(
dq
q

)
,

on the Tate curve T (q) with canonical differential ωcan. See Section 2.2 of [DR14] for
more details.

The φ-isotypic component of Hr+1
dR (Er/Cp), denoted Hr+1

dR (Er/Cp)φ is two dimensional.
Assume now that φ is ordinary at p. This implies the existence of a one dimensional
subspace (the unit root subspace) on which the Frobenius endomorphism acts as multipli-
cation by a p-adic unit. We can then pick a unique element ηu-r

φ in this unit root subspace

24

to extend {ωφ} to a basis {ωφ, ηu-r
φ } such that 〈ωφ, ηu-r

φ 〉 = 1, where 〈·, ·〉 is the alternating
Poincaré duality pairing on Hr+1

dR (Er/Cp). The basis {ωφ, ηu-r
φ } will play an extremely im-

portant role in Section 4. We will now provide some more information about the Poincaré
pairing. The reader can consult Chapter 5 of [Col95] for more on this pairing. We will
however follow the notation and conventions used in Section 2.1 of [DR14].

Let X be an arbitrary smooth proper curve over Spec(Zp) and let X be its generic
fibre. For a complete subfield K of Cp, we write XK for the base change of X to K. The
authors in loc. cit. construct open annuli V1, ...,Vs and a region

Wε = A ∪
s⋃
i=1

Vj,

such that the de Rham cohomology H1
dR(XK) can be identified with the space of classes

of rigid analytic forms on Wε over K with vanishing annular residues.

Let us write Ω1(Wε) for the set of rigid differentials on Wε. Given two cohomology
classes ξ1, ξ2 in H1

dR(XK), let ω1, ω2 ∈ Ω1(Wε) be respective representatives for them. Let
also F (j)

ω1 be a local analytic primitive of ω1 on the annulus Vj. The Poincaré pairing is
then given by

〈ξ1, ξ2〉 =
s∑
j=1

ResVj
(
F (j)
ω1
· ω2

)
, (2.16)

where ResVj is the p-adic annular residue (cf. Chapter 7 of [Col94] and Lemma 2.1 of
[Col89]).

In practice, the difficulty in computing a Poincaré pairing lies in finding appropriate
expansions for the terms appearing in Equation (2.16). We will discuss this in Chapter 6,
as well as a known method for computing Poincaré pairings, which only works in a very
limited number of cases. We will also explain how the work done in this thesis allows us
to compute more general instances of Poincaré pairings.

25

Chapter 3

Explicit algorithmic methods

This chapter is one of the two main component of this thesis. In it we will introduce
new algorithmic methods that build upon the current known methods. We first start
by recalling the work of Lauder, in [Lau14], on ordinary projection of overconvergent
modular forms. We then explain how to generalize it to nearly overconvergent modular
forms. Finally, we explain how one can actually compute general projections (not just
ordinary projections). This will enable us to study more general theoretical objects in
Section 4.2.

3.1 Ordinary projections

3.1.1 Computing the Katz Basis and the Up operator

In this thesis, we are interested in computational applications. We would therefore like to
be able to write down q-expansions for our overconvergent modular forms. However, as
these q-expansions are simply power series in p-adic terms, we will have to approximate
our overconvergent modular forms as truncated power series (i.e. polynomials) modulo
pn by viewing them in Z[[q]]/(qh, pm) for some m ∈ N and some h ∈ N depending on N, k
and χ. Once we know what level of precision we want to obtain after our calculations, we
can decide what level of precision we need to start with, as we know how much precision is
lost through the algorithms that we use. An alternative – more ad hoc – way to measure
the precision of our outputs (p-adic numbers) is to run our algorithm multiple times, to
different precisions, and see by what power of p they differ.

We will explain how to write the q-expansion of an overconvergent modular form
H ∈ Moc

k (Zp, N, χ; p
p+1

) and write down a matrix representing Up. We follow [Lau14]
to do so. Assume χ is trivial for simplicity. Our output will have level of precision
Z[[q]]/(pm, qh(m,p)) for any desired m ∈ N and where h(m, p) is defined in the following.
If we want our output to lie in Z[[q]]/(pm, qh(m,p)), we need to start with a greater level of
precision, because our method might cause a certain loss of precision. In [Lau14], we see
that we need to take n :=

⌊
(p+1)m
p−1

⌋
and let h(m, p) := h′p, where h′ is the Sturm bound

of Mk+n(p−1)(N).

26

Let di := dimZpMk+i(p−1)(Zp, N) and mi := di − di−1 = dimZp Ak+i(p−1)(Zp, N). Let
also d := dn. Pick a row-reduced basis {bi,s : s = 1, ...,mi} for each Ak+i(p−1)(Zp, N) for
i = 0, ..., n. Compute

ei,s :=
pb

i
p+1c · bi,s
Ei
p−1

mod (qh
′p, pm

′
),

where m′ := m+
⌈

n
p+1

⌉
. Let

Kb := {ei,s}i,s =

{
pb

i
p+1c · b
Ei
p−1

mod (qh
′p, pm

′
) : i = 1, ...,

⌊
(p+ 1)m

p− 1

⌋
; s = 1, ...,mi

}
.

We call Kb the Katz basis, it has dn elements. To simplify notation, we shall write
Kb = {v1, ..., vdn}.

Any overconvergent modular form of growth condition r := 1
p+1

, when reduced mod-
ulo (qh

′p, pm
′
), can be expressed as a linear combination of elements in Kb.

Now, we apply the Atkin operator Up to the Katz basis to obtain

ti,s := Up(ei,s) mod (qh
′
, pm

′
),

and write S := {ti,s}. Let E and T be the d× h′ matrices formed by taking the elements
of Kb and S respectively and looking at the first h′ terms in their q-expansions. Using
linear algebra, compute the d× d matrix A′ such that T = A′E. Then, A := A′ mod pm

is the representation of the operator Up in the Katz basis. We write A = [Up]Kb.

The advantage of this approach is that we only need to compute Up once on the Katz
basis and then we will be able to apply the Atkin operator as many times as we wish
without having to actually use its original definition. Given an overconvergent modular
form f of growth condition p

p+1
, we can express it as a sum

f =
∑
i

αivi mod (qh
′p, pm

′
). (3.1)

Write [f]Kb := (α1, ..., αd) and compute A[f]Kb. Letting γi denote the entries of A[f]Kb,
we find

Up(f) =
∑
i

γivi mod (qh
′p, pm).

Thus,
[Up(f)]Kb = A[f]Kb. (3.2)

The proof of correctness of Equation (3.2) is quite subtle. Indeed, we are representing
the infinite matrix Up by a d× d truncation A of it. In general, there would be no reason
for this to hold. However, there are two results that allow us to justify this step. First of
all, Wan shows in [Wan98] that the entries of the matrix Up decay as we go down along
the columns. We thus obtain, in our setting, that the bottom part of Up (below the first
d entries) vanishes modulo pm. This result, on its own, is not enough to justify Equation
(3.2), as we still need to deal with the right portion of the matrix Up, and show that its

27

entries also decay (and vanish modulo pm) as we go along the rows. In other words, we
are interested in the question mark “?” appearing in the equation

Up =

[
A ?
0 0

]
mod pm.

We cannot actually show that the entries of Up decay as we go along the rows, which would
have been enough to justify Equation (3.2). Instead, we turn our attention the vector
[f]Kb. In general, when f is 1/(p+1)-overconvergent, we cannot do much. However, as is
explained in Section 2.2.2 of [Lau14] and the last paragraph of Section 3.2.1 in [Lau11],
when f is p/(p+ 1)-overconvergent, the coordinates of f , when represented as an infinite
vector in the infinite Katz Basis, vanish modulo pm, except for the first d entries. We
thus get, modulo pm, [

A ?
0 0

] [
[f]Kb

0

]
=

[
A[f]Kb

0

]
,

which gives Equation (3.2).

Remark 6. Note that we let the overconvergent modular form f in Equation (3.1) have
growth rate p

p+1
instead of just 1

p+1
. Although we can write a 1

p+1
-overconvergent modular

form φ in the Katz basis, and A = [Up]Kb in the same basis, we cannot directly apply
A to [φ]Kb, as we just explained in previous paragraph. Indeed, the coefficients in the
expansion of [φ]Kb will not decay fast enough (p-adically) for our calculations to be
accurate. This issue is entirely avoided when φ is p

p+1
-overconvergent. Thus, when dealing

with a 1
p+1

-overconvergent form φ, we have to compute Up(φ) directly (without using the
matrix representation A of Up) to obtain a p

p+1
-overconvergent form, thus improving its

overconvergence and decay properties. After that, we may apply A to [Up(φ)]Kb.

3.1.2 Ordinary projections of overconvergent modular forms

As we just saw, we can write a matrix A representing the operator Up in the Katz basis
Kb = {ei,s}i,s modulo pm and qh for some appropriately chosen m,h ∈ N.

To compute the ordinary projections of overconvergent modular forms, we recall the
definition eord := limUpn! . So, having represented Up as a matrix A, we need to pick a big
enough R ∈ N such that AR represents eord to our desired level of precision. We see from
Algorithm 2.1 in [Lau14] that we can take R := (pκ−1)pm and κ is a positive integer such
that all the unit roots of the reverse characteristic polynomial of A lie in some extension
of Zp with residue class field of degree κ over Fp.

So, given an overconvergent modular form f of growth condition p
p+1

, written as∑
i αivi modulo (qh

′
, pn), we compute γ := AR[f]Kb and let γi denote the entries of γ.

Finally, we obtain
eord(f) =

∑
i

γivi mod (qh
′
, pn).

28

3.1.3 Ordinary projections of nearly overconvergent modular
forms

For simplicity, let d denote the operator q d
dq . So the δk operator from (2.9) becomes

δk = d + kX. Let g, h be two classical modular forms of weights `,m respectively, and
let H := d−(1+t)(g[p]) × h, for some integer t with 0 ≤ t ≤ min{`,m} − 2. We wish to
compute

X := eord(H) = eord

(
d−(1+t)(g[p])× h

)
.

The modular form d−(1+t)(g[p]) has weight `−2(1+ t), hence X has weight `+m−2t−2.
The condition 0 ≤ t ≤ min{`,m} − 2 ensures that X , g and h are balanced, i.e. the
largest weight is strictly smaller than the sum of the other two. In other words, three
modular forms are balanced if their weights are the lengths of the sides of a triangle of
non-zero area.

If we had that t = `− 2, the form H := d−(1+t)(g[p])× h would have been overconver-
gent. This is because Theorem 2.1.9 still applies for negative powers of d, after depleting
the modular form to avoid dividing by p, i.e. we have a map

Moc
1+a(B,Γ1(N)) −→Moc

1−a(B,Γ1(N))

g 7→ d−ag[p] =
∑
p6 |n

an(g)

na
qn, (3.3)

for all a ≥ 1. But, in our case, H is not necessarily overconvergent and we cannot di-
rectly use the methods introduced in [Lau14] to compute the ordinary projection eord(H).
However, H is nearly overconvergent (Proposition 2.9 in [DR14]) and Theorem 2.2.3 tells
us that

eord(H) = eord (πoc(H)) = eord

(
πoc

(
d−(1+t)(g[p])× h

))
,

where πoc is the overconvergent projection operator. Since πoc(H) is overconvergent,
by definition, we can follow the methods described in [Lau14] to compute its ordinary
projection, thus obtaining eord (πoc(H)) = eord(H). We therefore turn our attention to
computing πoc(H). Note that we are not actually interested in taking the overconver-
gent projection of any nearly overconvergent modular form; we are specifically computing
πoc

(
d−(1+t)(g[p])× h

)
. We therefore use a trick (see Theorem 3.1.1) that specifically ap-

plies to our setting, as was suggested to us by David Loeffler.

Set G := d1−`g[p], it is an overconvergent modular form of weight 2−`, as in Equation
(3.3). Let n = ` − 2 − t ≥ 0 so that d−1−tg[p] = dnG and πoc

(
d−1−t(g[p])× h

)
=

πoc((dnG)× h). Consider the Rankin-Cohen bracket [Coh75, Zag94]

[G, h]n =
∑

a,b≥0,a+b=n

(−1)b
(

(2− `) + n− 1

b

)(
m+ n− 1

a

)
da(G)db(h). (3.4)

Note that the individual terms in this sum are all p-adic modular forms of weight ` +
m − 2t − 2 that are not necessarily overconvergent. However, the entire sum [G, h]n is
overconvergent (see Theorem 3.1.1 below). It turns out that the Rankin-Cohen bracket
is closely related to the overconvergent projection operator.

29

Theorem 3.1.1. Let φ1, φ2 be overconvergent modular forms of weights κ1 and κ2 re-
spectively, then, for all s ≥ 0,

[φ1, φ2]s =

(
κ1 + κ2 + 2s− 2

s

)
πoc((dsφ1)× φ2).

This follows from Section 4.4 of [LSZ20] (see also Theorem 1 in [Lan08]). We thus
obtain the following Corollary.

Corollary 3.1.2. We can relate [G, h]n and πoc((dnG)× h) as follows

[G, h]n =

(
−`+m+ 2n

n

)
πoc((dnG)× h).

Thus, we can simply compute [G, h]n using equation (3.4) to obtain πoc(H).

Remark 7. Note that we had to pass through G instead of using g directly as we cannot
have the subscript s of the Rankin-Cohen bracket [·, ·]s be negative. Moreover, since the
modular forms X , g, h are balanced,

(−`+m+2n
n

)
cannot be zero.

3.2 Eigenspace σ projections

In the previous sections, we have seen how to compute ordinary projections, i.e. pro-
jections over the space of overconvergent modular forms of slope zero. We now consider
taking projections over the space of overconvergent modular forms of slope α, for any
α ∈ Q≥0, as defined in Section 2.2, via the slope decomposition in Equation (2.13).

We start by making this notion of projection clear. Recall the Up equivariant decom-
position of Moc

k (N) described in (2.13). For all α ∈ Q∪ {∞}, it allows us to express any
form H as a sum H = Fα + F , where Fα ∈ Moc

k (N)slope α and F ∈ Xα. We then call Fα
the projection of H onto the space of slope α, or the slope α projection of H. Consider
now the eigenspace associated to a single eigenvalue σ such that valp(σ) = α. We will
explain how to project modular forms onto such an eigenspace. This method has been
used in [DL21] and is based on an insight of David Loeffler (see the last paragraph of
Section 6.3 of [LSZ20]). We call such a projection the eigenspace σ projection. This can
be seen as a special case of the slope α projection, as these two notions would agree in
the case where Up only has one eigenvalue σ of valuation α.

In order to compute a eigenspace σ projection, we will use the following algebra trick
rather than doing it directly. To do so, we will use the Smith normal form (cf. [Smi61]).

Theorem 3.2.1 (Smith’s normal form). Fix a principal ideal domain R and let M ∈
Mn(R). Using elementary operations, one can transform M to a matrix D of the form

D = diag (a1, ..., as) ,

such that a1, ..., as are the invariant factors of M . We also have a1|a2|...|as. In particular,
there are invertible matrices P,Q such that QMP = D.

Remark 8. When we say elementary operations in Theorem 3.2.1, we mean the following
operations:

30

(i) Exchanging 2 rows, or 2 columns.

(ii) Adding an F[x]-multiple of a row to another row, and the same with columns.

(iii) Multiplying a row, or a column, by a unit of F[x] (i.e. a non-zero scalar in F).

There are efficient computational ways to find the expression QMP = D described in
Theorem 3.2.1, and we can use MAGMA ([BCP97]) to do so in practice.

Recall that in Section 3.1.1 we found a matrix A representing the Atkin operator Up
acting on the Katz basis of Moc

k (Zp, N, χ; 1
p+1

). Let σ be a eigenvalue for Up and let
M = Mσ := A− σId. We can put Mσ in Smith normal form D, where

D = diag (a1(σ), ..., as−1(σ), as(σ)) , (3.5)

such that a1(σ)|a2(σ)|...|as(σ). Let P = Pσ and Q = Qσ be the matrices such that
QMσP = D. We now remark that as(σ) should be zero, as σ is an eigenvalue for Up.
However, recall that A is only an approximation for Up. More precisely (see Section
3.1.1), A ∈Mdn×dn(Z/pmZ) is equal to Up modulo pm. And so, as(σ) will only be zero in
Z/pmZ.

Moreover, the case as−1(σ) = 0 happens precisely when σ has multiplicity (as an
eigenvalue of Up) more than one. We will initially exclude this case for simplicity, but we
will address it later in Section 3.2.2. Indeed, in the case where σ has multiplicity more
than one, the eigenspace associated to σ also contains another eigenform (other than the
one we are projecting on) and the method we are presenting in Section 3.2.1 will not
work.

Assume henceforth that we are dealing with an eigenvalue σ of multiplicity one. In
particular, the σ-eigenspace is one-dimensional. This assumption will be crucial in Section
3.2.1.

3.2.1 The projector to fσ

For the reminder of this section, we will assume the spectral expansion formula given by
Equation (2.14). The spectral expansion conjecture [GM95] is widely believed to be true
and has been proven in the case where p = 2, N = 1 and 5/12 < r < 7/12 (cf. [Loe07]).
Our algorithm for eigenspace σ projections will thus work under the assumption that this
conjecture holds.

Let fσ be an eigenform lying in the one-dimensional σ-eigenspace. Let π := πσ denote
the last row of Q ∈ Mdn×dn(Z/pmZ), i.e. πi = Qi,dn for i = 1, ..., dn. We call π the
projector to fσ. The reason for this will become clear in the following. Recall from
Equation (3.5) that QMP = D = diag (a1(σ), ..., as−1(σ), 0) and

∑
k,lQikMklPlj = Dij,

whereM := A−σId. We will show that π is orthogonal to all modular forms of eigenvalue
not σ.

Proposition 3.2.2. The projector πσ is orthogonal to all p/(p+ 1)-overconvergent mod-
ular forms (written in the Katz basis) not in the σ-eigenspace.

Proof. As we are working with p/(p + 1)-overconvergent modular forms, we will be able
to represent the action of Up on them by the matrix A given in Section 3.1.1. See, in
particular, the final paragraph of that section for more details on representing Up by A.

31

We start with the simplest case. Let fs be an eigenform of Up with eigenvalue s, such
that s 6= σ. Then, M [fs]Kb = (A− σId)[fs]Kb = (s− σ)[fs]Kb. Hence,

Q(s− σ)[fs]Kb = QM [fs]Kb = DP−1[fs]Kb. (3.6)

Since π is the last row of Q and the last row of D is completely zero, Equation (3.6) gives

(s− σ)π[fs]Kb = π(s− σ)[fs]Kb = 0. (3.7)

As s 6= σ, we must have π[fs]Kb = 0, up to a certain level of precision, as is explained in
Remark 9. This shows that any eigenform of Up, with eigenvalue of different norm than
the norm of σ, is orthogonal to π.

Let now Fs be a generalized eigenform for the eigenvalue s, again with s 6= σ. There
exists some minimal integer r ∈ N such that (A − sId)r[Fs]Kb = 0. Let Ms := A − sId,
so that M r

s [Fs]Kb = 0, and write

(M −Ms)
r [Fs]Kb =

r−1∑
i=0

(
r

i

)
(−1)iM r−iM i

s[Fs]Kb + (−1)rM r
s [Fs]Kb

= M
r−1∑
i=0

(
r

i

)
(−1)iM r−1−iM i

s[Fs]Kb.

Therefore, (M −Ms)
r [Fs]Kb = MC[Fs]Kb, where C :=

∑r−1
i=0

(
r
i

)
(−1)iM r−1−iM i

s. Now,
(M −Ms)

r = (s− σ)rId, hence

(s− σ)r ·Q[Fs]Kb = Q (M −Ms)
r [Fs]Kb = QMC[Fs]Kb = DP−1C[Fs]Kb. (3.8)

And as above, Equation (3.8) gives

(s− σ)rπ[Fs]Kb = 0. (3.9)

Finally, since s 6= σ, we have π[Fs]Kb = 0, up to a certain level of precision (see Remark
9). That is, π must be orthogonal to all overconvergent modular forms not in the σ-
eigenspace.

Remark 9. It is crucial in Equations (3.7) and (3.9) that we are working over Zp in order
to conclude that π[fs]Kb and π[Fs]Kb are zero. However, in practice, we are working
over Z/pmZ for some m ∈ Z. So Equation (3.9) actually becomes pm|(s − σ)rπ[fs]Kb,
which does not necessarily imply that pm|π[fs]Kb. Therefore, there is a loss of precision
of r · valp(s − σ). This loss of precision can be bounded above by looking at the largest
non-zero entry of D, since valp(s−σ) ≤ maxi valp(Di,i). To see this, using Equation (3.6),
write

(s− σ) rowi(Q) · [fs]Kb = Di,i rowi(P
−1) · [fs]Kb.

We now explain how to compute the projection eeigenspace σ(H) of an overconvergent
modular form H in Moc

k (Zp, N, χ; p
p+1

) over the σ-eigenspace. First, we know that

H = ρfσ +
∑
s 6=σ

Fs, (3.10)

for some constant ρ, since we are assuming that the σ-eigenspace is one dimensional.
This gives us π · [H] = ρ(π · [fσ]). This is why we call π the projector to fσ. Now, since

32

π is non trivial, it cannot be orthogonal to all modular forms, so π · [fσ] cannot also be
zero. We hence deduce the following formula for the projection of H over fσ:

λfσ(H) := ρ =
π · [H]Kb

π · [fσ]Kb
. (3.11)

More formally, the projection operator λfσ over fσ is the unique Hecke-equivariant linear
functional that factors through the Hecke eigenspace associated to fσ and is normalized
to send fσ to 1, as in Definition 2.7 of [Loe18] (see also Section 9.2 of [LZ16]). This gives
us an associated idempotent operator efσ(·) := λfσ(·) fσ. Since we are assuming that the
σ-eigenspace is one dimensional, we have eeigenspace σ(H) = efσ(H).

As explained in Remark 6, this holds under the assumption that H has growth con-
dition p

p+1
. In the case where H has growth condition 1

p+1
, we need to use a similar

trick to that of Remark 6. We first apply the Atkin operator to H to obtain a modular
form Up(H) of growth rate p

p+1
. Then, we follow the algorithm described above as usual.

However, we need to adjust our final output by dividing by σ to compensate for the fact
that we took Up(H) instead of H.

Indeed, write H as a sum H = ρfσ +
∑

s 6=σ Fs, as in Equation (3.10). Then,

Up(H) = ρ Up(fσ) +
∑
s 6=σ

Up(Fs)

= ρσfσ +
∑
s 6=σ

Up(Fs).

Since the action of Up preserves the eigenspaces ofMoc
k (N), we get that π · [Up(Fs)]Kb = 0

for s 6= σ, so π · [Up(H)]Kb = ρσ π · [fσ]Kb. Finally,

λfσ(Up(H)) = ρσ = σ λfσ(H).

We thus obtain
λfσ(H) =

π · [Up(H)]Kb

σ π · [fσ]Kb
. (3.12)

3.2.2 The case of multiplicity greater than 1

In the case where the eigenvalue σ has multiplicity r greater than one, the eigenspace
associated to σ will contain eigenforms other than the one we are projecting on. The
method we are presenting here will thus not work because the projector eeigenspace σ over
σ-eigenspace is not equal to efσ anymore. In this case, one needs to use the last r rows
of Q and the other Hecke operators in order to find a system of equations to solve and
obtain λfσ(H).

As a simple example, assume that we already have a basis for the σ-eigenspace con-
sisting of normalized Hecke eigenforms {f1, ..., fr}, with f1 = fσ. We then express the
eigenspace σ projection of H as a linear combination

∑
j ajfj. Using the last r rows

π1, ..., πr of Q, we obtain a system of equations πi · [H] =
∑

j aj πi · [fj]. This can easily be
solved in order to find a1 = λfσ(H). The author has not yet implemented this method.

33

3.2.3 Stabilizations of Hecke eigenforms

We end Section 3.2, which mainly discusses the issue of eigenspace σ projections, by
explaining how one can construct a modular form fσ of eigenvalue σ and slope valp(σ),
for certain values of σ. This method will be quite useful later on in this thesis for two
reasons. Firstly, it will reappear in the definition of the p-adic Garrett-Rankin triple
product L-function (in Section 4.1). Secondly, it will give us modular forms of eigenvalue
σ with which we will be able to test our eigenspace σ projections algorithms.

Let p 6 |N . Consider an overconvergent modular form f =
∑
anq

n of weight k and
level N . Assume that f is an eigenform for the operator Tp,

Tpf = apf. (3.13)

We can then define two new eigenforms fα and fβ as follows. Let α, β be the roots of the
Hecke polynomial

x2 − apx+ pk−1χ(p). (3.14)

Assume that the modular form f is regular at p, i.e. that α and β are different. We
sometimes denote α and β by αf,p and βf,p to emphasize the dependence on f and p.
Assume as well that f is ordinary at p, i.e. that one of the roots of x2−apx+ pk−1χ(p) is
a p-adic unit (i.e. has valuation zero). Say without loss of generality that valp(αf,p) = 0.
Define the following two modular forms:

fα(q) := f(q)− βf(qp);

fβ(q) := f(q)− αf(qp).

We call fα and fβ the p-stabilizations of f . They both have level pN . Since we assumed
that αf,p is a unit, it is customary to call fα(q) := f(q)−βf(qp) the ordinary p-stabilization
of f . Using equation (3.13) and the fact that V = Frobp is a right inverse of Up, we write

Up(fα) = Up(f)− β(UpV)f

= apf − χ(p)pk−1V f − βf
= (α + β)f − αβV f − βf
= αfα.

Similarly,
Up(fβ) = βfβ.

Hence, fα (respectively, fβ) is an eigenvalues of Up with eigenvalue α (respectively, β).

In the rest of this thesis, we will be interested in taking the form H := d−(1+t)(g[p])×h
(see Section 3.1.3) and compute its projection over the eigenspaces generated by fα and
fβ. We will do so using the methods described in this section. The following section
introduces the theoretical setting that motived us to work on eigenspace σ projections of
p-adic modular forms.

34

Chapter 4

A p-adic symbol for triples of
modular forms

This chapter is the second main component of this thesis. In it we introduce a new p-adic
symbol for triples of modular forms. This new theoretical object is interesting in its own
right, as it is related to a known triple product p-adic L-function, in addition to enjoy-
ing nice symmetry properties. Moreover, our new p-adic symbol will give us the perfect
examples to use the new algorithms described in Chapter 3.

In Section 3.1.3, we described how to compute the ordinary projection of the nearly
overconvergent modular form

H := d−(1+t)(g[p])× h,

where g, h are two classical modular forms of weights `,m respectively. In [DR14], the
authors consider the same H, but require that t = ` + m − 2 to ensure that H is
overconvergent. We will work in greater generality here and allow 0 ≤ m ≤ min{k, `}−2.
The p-adic modular formH will still be nearly overconvergent. The reason why we wanted
to compute this H specifically is that it appears in the expression of the Garrett-Rankin
triple product p-adic L-function Lp(f ,g,h)(k, `,m), in Definition 4.1.1.

4.1 The Garrett-Rankin triple product p-adic
L-function

Let f, g, h be three cuspidal eigenforms of levelN , respective weights k, `,m and respective
characters χf , χg, χh. Fix a prime p ≥ 5 and assume that p 6 |N , that χfχgχh = 1 and
that the weights k, `,m are balanced, i.e. the largest one is strictly smaller than the
sum of the other two. Note that the assumption that p ≥ 5 is purely for simplicity and
could potentially be relaxed at the cost of some extra care. Let αf , βf be the roots of
the Hecke polynomial (3.14) associated to f . Assume that the modular forms f, g and
h are ordinary and regular at p, so that αf,p, αg,p and αh,p are units. Consider the the
p-stabilizations fα and fβ of f . They both have level pN , and are eigenforms for the Up

35

operator with respective eigenvalues αf and βf . Let

t :=
`+m− k − 2

2
≥ 0, c :=

k + `+m− 2

2
.

We may now define the Euler factors:

E(f, g, h) := (1− βfαgαhp−c)(1− βfαgβhp−c)(1− βfβgαhp−c)(1− βfβgβhp−c);
Ẽ(f, g, h) := (1− αfαgαhp−c)(1− αfαgβhp−c)(1− αfβgαhp−c)(1− αfβgβhp−c);

E0(f) := 1− β2
fχ
−1
f (p)p1−k; Ẽ0(f) := 1− α2

fχ
−1
f (p)p1−k;

E1(f) := 1− β2
fχ
−1
f (p)p−k; Ẽ1(f) := 1− α2

fχ
−1
f (p)p−k.

(4.1)

Following Section 2.6 of [DR14], let Γ := 1 + pNZp, and let Λ := O[[Γ]] be the completed
group ring of Γ. Let also Λ′ := Frac(Λ). Let f ,g,h be Hida families, with coefficients
in finite flat extensions Λf ,Λg,Λh of Λ, interpolating f , g and h at the weights k, ` and
m. The existence of such families is guaranteed by Hida’s construction in [Hid86]. Let
f∗ := f ⊗χ−1

f , and note that for classical points x (in Z) we have (f ∗)x = (fx)
∗. We write

κ(x) for the weight of fx.

Given an ordinary eigenform F and an ordinary overconvergent modular form G (for
example eord(d−1−t(gy

[p])×hz) from (4.2)), we introduce the operator c(F,G). It denotes
the coefficient of F appearing in the expression of G as a linear combination of ordinary
(normalized) eigenforms (see [Hid93], p. 222).
Remark 10. In order to define the pairing c(F,G), we are assuming here that the action
of the Hecke algebra on the ordinary subspace in weight k is semi-simple (see assumption
(S3) on p. 222 in [Hid93]). This is the case for N square-free, since k ≥ 2, as is described
in [Lau14].

Definition 4.1.1 (Lemma 2.19, [DR14]). The Garrett-Rankin triple product p-adic L-
function attached to the triple (f ,g,h) of Λ-adic modular forms is the unique Lp(f ,g,h)
in Λ′f ⊗Λ (Λg ⊗ Λh ⊗ Λ) such that at classical balanced points (x, y, z) we have

Lp(f ,g,h)(x, y, z) := c
(
f ∗(p)x , eord(d−1−t(gy

[p])× hz)
)
, (4.2)

where t := κ(y)+κ(z)−κ(x)−2
2

, f ∗x := fx ⊗ χ−1
f is the dual of fx and f

∗(p)
x is the ordinary

p-stabilization of f ∗x . We write

Lp(f ,g,h) := c
(
f∗, eord(d•g[p] × h)

)
for notational brevity.

Remark 11. The Garrett-Rankin triple product p-adic L-function inherits its name from
the classical Garrett-Rankin triple product L-function (cf. [Gar87, PSR87]), as Darmon
and Rotger have shown that the former interpolates certain values related the latter (see
Remark 4.8 in [DR14]).

Note that in [DR14], the authors use the notation L f
p (f ,g,h). And when one wishes

to project on the g component instead of the f component, they introduced the notation
L g
p (f ,g,h) := L g

p (g,h, f). We use here the more compact notation Lp(f ,g,h). And for
the projection on the g component, we simply write Lp(g,h, f). Thus we always project
on the first component appearing amongst the three used ones.

Moreover, we use f∗ instead of f in Definition 4.1.1. This is because eord(d•g[p] × h)
has character χgχh = χ−1

f , hence the need to project over f∗ := f ⊗ χ−1
f and not f .

36

Given a cuspidal newform φ, let λφ be the projection operator over φ; it is the unique
Hecke-equivariant linear functional that factors through the Hecke eigenspace associated
to φ and is normalized to send φ to 1, as in Definition 2.7 of [Loe18]. This allows
to express the Garrett-Rankin triple product p-adic L-function Lp(f ,g,h) at classical
balanced points (x, y, z) as

Lp(f ,g,h)(x, y, z) := λf∗x,α(d−1−tg[p]
y × hz), (4.3)

where f ∗x,α := (f ∗x)α is the ordinary p-stabilization of the dual of fx.

In order to experimentally compute the values of Lp(f ,g,h)(x, y, z), Equation (4.2)
reveals that the main ingredient is the computation of ordinary projections of p-adic
modular forms. In [Lau14], parts of which have been summarized here in Section 3.1.2,
the author explains how to calculate the ordinary projections of overconvergent modular
forms, and is thus able to compute special values of the Garrett-Rankin triple product
p-adic L-function, for balanced weights (k, `,m) satisfying k = 2 + m − `. Indeed, this
condition guarantees that d−1−t(g`

[p])×hm will be overconvergent, thus the code and the
theory in [Lau14] are enough.

In general, however, when the weights (k, `,m) are only balanced, d−1−t(gy
[p])× hz is

only nearly overconvergent. We therefore need to use the generalizations we introduced in
Section 3.1.3 in order to compute ordinary projections of nearly overconvergent modular
forms, thus being able to compute the Garrett-Rankin triple product p-adic L-function
for any balanced classical weights.

In Section 3 of [DR14], the authors construct a generalized Gross-Kudla-Schoen diag-
onal cycle ∆ := ∆k,`,m for a triple of balanced classical weights (k, `,m). More precisely,
this cycle is an element of the Chow group CHr+2(W)0 where W := Ek−2 × E `−2 × Em−2

and r := (k + `+m)/2− 3 (cf. Chapter 1 in [Ful13] for more on Chow groups). One can
check from Definition 3.3 of [DR14] that ∆k,`,m indeed has codimension r + 2. Let

AJp : CHr+2(W)0 −→ Filr+2H2r+3
dR (W)∨. (4.4)

be the p-adic Abel-Jacobi map (cf. Section (1.2) of [Nek00] or [Bes00]). Darmon and
Rotger then show, in Theorem 3.14 of [DR14], that

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)t+1t!

E1(f)

E(f, g, h)
〈ηu-r
f , d−1−tg[p] × h〉, (4.5)

where t := `+m−k−2
2

. In Equation (4.5), ωg ∈ H`−1
dR (E `−2/Cp)g and ωh ∈ Hm−1

dR (Em−2/Cp)h
denote the differentials associated to the forms g and h respectively, that we introduced
at the start of Section 2.3. Furthermore, ηu-r

f will denote the element lying in the unit
root space of Hk−1

dR (Ek−2/Cp)f∗ such that 〈ωf , ηu-r
f 〉 = 1 (see the discussion in Section 2.3),

where ωf ∈ Hk−1
dR (Ek−2/Cp)f∗ is the differential associated to f ∗. Note that although our

notation for ωg and ωh is the same as the one introduced at the start of Section 2.3, our
notation for ωf and ηu-r

f is not. Indeed, the roles of f and f ∗ have been switched in ωf
and ηu-r

f ; but g and h are still the same and have not been replaced by their duals in
ωg and ωh. This choice is necessary, as explained in the second part of Remark 11, and
is consistent with the notation used in [DR14]. Finally, given the cohomology classes
ηu-r
f ∈ Hk−1

dR (Ek−2), ωg ∈ Hk−1
dR (E `−2) and ωh ∈ Hk−1

dR (Em−2), we can view the product
ηu-r
f ⊗ ωg ⊗ ωh in Equation (4.5) as an element of H2r+3

dR (W) thanks to the Künneth
decomposition (cf. [Kün23, Kün24]).

37

We now, as in Theorem 5.1 of [DR14], provide an alternative way to express the
Garrett-Rankin triple product p-adic L-function by relating it to the generalized Gross-
Kudla-Schoen diagonal cycle as follows.

Proposition 4.1.2. We have

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)tt!

E0(f)E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h).

Proof. By Theorem 3.14 in [DR14], we have

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) =

〈
ηu-r
f ,−(−1)tt!E1(f)

E(f, g, h)
ef∗,ord(d−1−tg[p] × h)

〉
.

Note that we write 〈ηu-r
f , φ〉 here to mean 〈ηu-r

f , ωφ〉 by abuse of notation. We observe that
the f ∗-isotypic component of eord(d−1−tg[p] × h) is λf∗α(d−1−tg[p] × h)f ∗α, because we can
express eord(d−1g[p] × h) as

λf∗α(d−1−tg[p] × h)f ∗α + (terms attached to other ordinary forms).

Therefore,

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)t+1t!

E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h)

〈
ηu-r
f , f ∗α

〉
.

Next, f ∗α = E0(f)eord(f ∗) by applying the proof of Lemma 4.2.1 to f ∗ instead of f , thus
by Proposition 2.11 in [DR14],〈

ηu-r
f , f ∗α

〉
= E0(f)

〈
ηu-r
f , eord(f ∗)

〉
= E0(f)

〈
ηu-r
f , f ∗

〉
= −E0(f),

as
〈
ηu-r
f , f ∗

〉
= −

〈
f ∗, ηu-r

f

〉
= −1 by definition of ηu-r

f . We finally obtain

AJp(∆)(ηu-r
f ⊗ ωg ⊗ ωh) = (−1)tt!

E0(f)E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h).

Equation (4.3) together with Proposition 4.1.2 give the following alternative expres-
sion for the Garrett-Rankin triple product p-adic L-function.

Corollary 4.1.3. The Garrett-Rankin triple product p-adic L-function can be written, at
classical balanced points (k, `,m), as

Lp(f ,g,h)(k, `,m) =
(−1)t

t!

E(f, g, h)

E0(f)E1(f)
AJp(∆)(ηu-r

f ⊗ ωg ⊗ ωh), (4.6)

Equation (4.2), or equivalently Equation (4.3), provides us with an elegant and com-
pact way to express the Garrett-Rankin p-adic L-function at classical balanced points.
Equation (4.6) on the other hand connects it to the Abel Jacobi map and provides us with
the right insight in order to define a new, more natural, version of the Garrett-Rankin
triple product p-adic L-function, which we expect to have nice symmetry properties.

38

4.2 A new p-adic triple symbol (f, g, h)p

We continue working in the same setup as the previous section. The differentials ωg ∈
H`−1

dR (E `−2/Cp)g and ωh ∈ Hm−1
dR (Em−2/Cp)h are the basis elements that we introduced at

the start of Section 2.3. Similarly to Section 4.1, ωf will denote the differential associated
to f ∗, and not f . This choice is necessary, as explained in the second part of Remark 11.

Our goal is to define a new quantity involving AJp(∆)(ωf ⊗ ωg ⊗ ωh) instead of
AJp(∆)(ηu-r

f ⊗ ωg ⊗ ωh), and we believe that this alternative should have nice symmetry
properties. We investigate such properties further in the remaining sections.

When computing AJp(∆)(ηu-r
f ⊗ωg⊗ωh), we only need to consider ordinary projections,

i.e. projections on the slope 0 subspace, as in [DR14] and [Lau14]. In the case of
AJp(∆)(ωf ⊗ ωg ⊗ ωh) however, as we will see in Lemma 4.2.2, we need to compute
projections on the slope k−1 subspace as well. More specifically, we will need to compute
two eigenspace projections for certain prescribed eigenvalues, as is explained below. This
can efficiently be done using the algorithm described in Section 3.2.

Before defining a new p-adic triple symbol, we first provide a way to express AJp(∆)(ωf
⊗ωg⊗ωh) in terms of projections onto isotypic spaces, similarly to Proposition 4.1.2. Let

`fgh,α := λf∗α
(
d−1−t(g[p])× h

)
; `fgh,β := λf∗β

(
πoc
(
d−1−t(g[p])× h

))
. (4.7)

Note that including πoc before λf∗α in (4.7) would be redundant, by Theorem 2.2.3. We
have the following first attempt at making the quantity AJp(∆)(ωf ⊗ ωg ⊗ ωh) a little
more tractable.

Lemma 4.2.1. Let f be a classical eigenform of weight k that is ordinary at p with
valp(αf,p) = 0. Then, we have eord(f) = 1

E0(f)
fα and eslope k−1(f) = 1

Ẽ0(f)
fβ.

Proof. We have by definition fα(q) := f(q) − βf(qp) and fβ(q) := f(q) − αf(qp). So,
αfα − αf = βfβ − βf . Hence, αfα − βfβ = (α − β)f . Thus, using the notation from
(4.1), we have

eord(f) =
αfα
α− β

=
1

E0(f)
fα, eslope k−1(f) =

βfβ
β − α

=
1

Ẽ0(f)
fβ.

Lemma 4.2.1 shows that in order for us to compute slope 0 and k−1 projections of f ,
we only need to compute eigenspace α and β projections of f , respectively. This explains
why we only turned our attention to eigenspace projections in Section 3.2.

Lemma 4.2.2. Let t := `+m−k−2
2

. We may rewrite AJp(∆)(ωf ⊗ ωg ⊗ ωh) as

(−1)tt!

(
E0(f)E1(f)

E(f, g, h)
`fgh,α 〈ωf , eord(f ∗)〉+

Ẽ0(f)Ẽ1(f)

Ẽ(f, g, h)
`fgh,β 〈ωf , eslope k−1(f ∗)〉

)
.

Proof. Note that f ∗ is orthogonal to the kernel of ef∗ , so 〈f ∗, φ〉 = 〈f ∗, ef∗(φ)〉 only
depends on the projection ef∗(φ) of φ, for any modular form φ. Adapting this to our
notation, we obtain 〈ωf , φ〉 = 〈ωf , ef∗(φ)〉, as ωf , here, is the differential attached to

39

f ∗. Furthermore, ef∗(φ) only depends on the overconvergent projection of φ. Indeed,
φ − πoc(φ) is purely nearly overconvergent (i.e. it has no overconvergent part) and will
not lie in the f ∗-isotypic space, as f ∗ is overconvergent. Lemma 4.2.1 tells us that
f has only two slope components: an ordinary one and one of slope k − 1. Namely,
f = 1

E0(f)
fα + 1

Ẽ0(f)
fβ, and thus to project over the f ∗-isotypic space, one needs to project

over the components f ∗α and f ∗β . Adapting the proof of Proposition 4.1.2 for the case of
AJ(∆)(ωf ⊗ ωg ⊗ ωh), and using the notation ξ(ωg, ωh) from [DR14] (see Equation (72)
on p. 30), we write

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = 〈ωf , ξ(ωg, ωh)〉
= 〈ωf , ef∗,ord(ξ(ωg, ωh)) + ef∗,slope k−1(ξ(ωg, ωh))〉

=

〈
ωf ,−

(−1)tt!E1(f)

E(f, g, h)
ef∗,ord(d−1−tg[p] × h)

〉
+

〈
ωf ,−

(−1)tt!Ẽ1(f)

Ẽ(f, g, h)
ef∗,slope k−1

(
πoc(d

−1−tg[p] × h)
)〉

(?)
= −(−1)tt!

E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h) 〈ωf , f∗α〉

− (−1)tt!
Ẽ1(f)

Ẽ(f, g, h)
λf∗β

(
πoc(d

−1−tg[p] × h)
) 〈
ωf , f

∗
β

〉
(4.8)

= −(−1)tt!
E1(f)

E(f, g, h)
λf∗α(d−1−tg[p] × h)E0(f) 〈ωf , eord(f∗)〉

− (−1)tt!
Ẽ1(f)

Ẽ(f, g, h)
λf∗β

(
πoc(d

−1−tg[p] × h)
)
Ẽ0(f) 〈ωf , eslope k−1(f∗)〉

= −(−1)tt!
E0(f)E1(f)

E(f, g, h)
`fgh,α 〈ωf , eord(f∗)〉

− (−1)tt!
Ẽ0(f)Ẽ1(f)

Ẽ(f, g, h)
`fgh,β 〈ωf , eslope k−1(f∗)〉 .

Thus,

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = (−1)t+1t!

(
E0(f)E1(f)

E(f, g, h)
`fgh,α 〈ωf , eord(f ∗)〉

+
Ẽ0(f)Ẽ1(f)

Ẽ(f, g, h)
`fgh,β 〈ωf , eslope k−1(f ∗)〉

)
,

as required.

At this point, we remark that the quantity obtained in Lemma 4.2.2 doesn’t seem to
be easily computable in any obvious way; in particular, we aren’t sure how to directly
compute 〈ωf , eord(f)〉 and 〈ωf , eslope k−1(f)〉. To get around this issue, we go back to step
(?) in Equation (4.8), From there, we go in a different direction, to find an alternative
expressions for AJp(∆)(ωf ⊗ ωg ⊗ ωh).

Theorem 4.2.3. Let t := `+m−k−2
2

. We have

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = (−1)tt!
〈ωf , φ(ωf)〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ `fgh,α +

Ẽ1(f)

Ẽ(f, g, h)
αf∗ `fgh,β

)
.

40

Proof. First, note that the action of Frobenius on ωf is given by φ(ωf) = ωV f∗ . Indeed,
when f has weight 2, this can bee seen by directly computing the action of Frobenius
on q-expansions and using Equation (2.15). For higher weights, this is explained in the
proof of Lemma 2.10 in [DR14]. Now, as 〈ωf , f ∗〉 = 〈ωf , ωf〉 = 0, we can write

〈ωf , f ∗α〉 = 〈ωf , f ∗ − βf∗V f ∗〉
= 〈ωf , f ∗〉 − βf∗ 〈ωf , V f ∗〉
= −βf∗ 〈ωf , ωV f∗〉

= − βf∗

pk−1
〈ωf , φ(ωf)〉 .

Similarly,
〈
ωf , f

∗
β

〉
= − αf∗

pk−1 〈ωf , φ(ωf)〉. Substituting this into step (?) of Equation (4.8),
we obtain

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = −(−1)tt!
E1(f)

E(f, g, h)
`fgh,α 〈ωf , f ∗α〉

− (−1)tt!
Ẽ1(f)

Ẽ(f, g, h)
`fgh,β

〈
ωf , f

∗
β

〉
= −(−1)tt!

E1(f)

E(f, g, h)

−βf∗
pk−1

`fgh,α 〈ωf , φ(ωf)〉

− (−1)tt!
Ẽ1(f)

Ẽ(f, g, h)

−αf∗
pk−1

`fgh,β 〈ωf , φ(ωf)〉 ,

which we rewrite as

AJp(∆)(ωf ⊗ ωg ⊗ ωh) = (−1)tt!
〈ωf , φ(ωf)〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ `fgh,α +

Ẽ1(f)

Ẽ(f, g, h)
αf∗ `fgh,β

)
.

We can compute all the terms appearing in the last line of (4.5). Indeed, the calcula-
tion of E1(f), E(f, g, h), Ẽ1(f), Ẽ(f, g, h) is a straightforward application of a formula. The
constants αf , βf are directly obtained by factoring the quadratic Hecke polynomial (3.14).
We can compute `fgh,α, `fgh,β by using the method described in Section 3.2. Finally, we
can compute the period 〈ωf , φ(ωf)〉 by using Kedlaya’s algorithm (cf. [Ked01]), in the
case where f has weight 2. In the other cases, we find work arounds.

We are now ready to write down our p-adic symbol for triples of modular forms.
Initially, one would think to mimic the definition of Lp(f, g, h) but replace ηu-r

f by ωf ,
thus obtaining the following contender

(−1)t

t!

E(f, g, h)

E0(f)E1(f)
AJp(∆)(ωf ⊗ ωg ⊗ ωh), (4.9)

for the definition of (f, g, h)p. However, experimental evidence, which we will present
in Chapter 5, shows that AJp(∆)(ωf ⊗ ωg ⊗ ωh) seems to already be symmetric (when
cyclically permuting f, g, h). Therefore, adding the factor E(f,g,h)

E0(f)E1(f)
to AJp(∆)(ωf⊗ωg⊗ωh)

would ruin the symmetry. Note that AJp(∆)(ωf ⊗ωg⊗ωh) already has correction factors
in it, as we can see in Theorem 4.2.3.

41

Definition 4.2.4. Let f, g and h be three cuspidal modular forms of level N and weight
k, ` and m (respectively) which are ordinary at p. We define the p-adic triple symbol
(f, g, h)p by

(f, g, h)p := (−1)tt!
〈ωf , φ(ωf)〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ `fgh,α +

Ẽ1(f)

Ẽ(f, g, h)
αf∗ `fgh,β

)
. (4.10)

In Definition 4.2.4, we do not actually need g and h to be cuspidal nor ordinary at
p, as Equation (4.10) is still defined when only f is. However, as we are interested in
permuting the order of f , g and h, we often require them all to be cuspidal and ordinary
at p. Thanks to Theorem 4.2.3, we may reformulate (f, g, h)p as follows.

Corollary 4.2.5. We can express the p-adic triple symbol (f, g, h)p as

(f, g, h)p := AJp(∆k,`,m)(ωf ⊗ ωg ⊗ ωh). (4.11)

The right hand side of Equation (4.11) appears to be symmetric in the variables f, g, h,
and thus suggests that (f, g, h)p is symmetric.

4.3 Symmetry properties of (f, g, h)p

There are two types of symmetry that can be considered for (f, g, h)p. The first, and the
easiest to prove, is the one between the second and third variables of (f, ∗, ∗)p when we fix
f . The second kind is the one between all three variable of (f, g, h)p (or equivalently the
one between the first and second variables). That symmetry is more interesting, involves
deeper mathematics.

4.3.1 Partial symmetry for (f, ∗, ∗)p

We will explain how we were lead to proving such a symmetry result by describing the
path the author took to finally obtain the desired proof, starting with the experimental
computations. We will therefore emphasize the close connection between computational
number theory and the theory – especially since we have gone through the trouble of
developing robust algorithms in Chapter 3 for computing projections of p-adic modulars
forms, therefore allowing us to compute (f, g, h)p.

4.3.1.1 Computational evidence

Our experiments have shown that in some cases (f, g, h)p = (f, h, g)p; while in some
other cases (f, g, h)p = −(f, h, g)p. We will present here some of the experimental results
we obtained, and summarize the whole of the data in a table further below. In what
follows, we will only present values of (f, g, h)p but not explain how the computations
are performed, as this would makes this subsection quite longer, and distract us from
the task at hand (understanding the behaviour of (f, ∗, ∗)p). We will present multiple
detailed examples of the calculation of (f, g, h)p in Chapter 5.

42

When comparing (f, g, h)p and (f, h, g)p, we do not have to actually compute all
the terms appearing the expansions. Indeed, looking at Equation (4.10), we see that
Ωf := 〈ωf , φ(ωf)〉 appears in both (f, g, h)p and (f, h, g)p. So we can only consider
(f, g, h)p/Ωf and (f, h, g)p/Ωf , when studying the symmetry of (f, ∗, ∗)p. This has the
advantage of avoiding the Poincaré pairing 〈ωf , φ(ωf)〉, which is quite mysterious and not
computable for weights greater than 2.

Weight (4, 6, 6): Let f1, f2,∈ Snew
6 (10,Q) and f ∈ Snew

4 (10,Q) be the modular forms
with MAGMA labels "G0N10k6A","G0N10k6B" and "G0N10k4A", respectively. Then,

(f1, f, f2)11/Ωf1 = −11574471190059869210906134237854826 · 11 mod 1134

(f1, f2, f)11/Ωf1 = 4740719931348921631946347271949109 · 11 mod 1134.

And we can check that (f1, f, f2)11/Ωf1 = (f1, f2, f)11/Ωf1 mod 1132, making (f1, ∗, ∗)11

symmetric.

Weight (4, 6, 8): Let f ∈ Snew
4 (15,Q), ϕ1, ϕ2 ∈ Snew

6 (15,Q) and ψ1, ψ2 ∈ Snew
8 (15,Q)

be the modular forms corresponding to the MAGMA labels "G0N15k4B","G0N15k6A",
"G0N10k6B","G0N15k8A" and "G0N15k8B", respectively. Then,

(f, ϕ1, ψ1)7/Ωf = 66366808153059798687154312213084012 · 73 mod 745

(f, ψ1, ϕ1)7/Ωf = −66366808153059798687154312213084012 · 73 mod 745

(f, ϕ2, ψ2)7/Ωf = 76643127027588438795543607432085940 · 73 mod 745

(f, ψ2, ϕ2)7/Ωf = −76643127027588438795543607432085940 · 73 mod 745.

And we can clearly see that (f, ∗, ∗)7 is anti-symmetric.

Weight (4, 8, 8): Let f1, f2, f3 ∈ Snew
8 (26,Q) be the modular forms with MAGMA labels

"G0N26k8A", "G0N26k8B" and "G0N26k8C", respectively. Let also f, g ∈ Snew
4 (26,Q)

be the modular forms with MAGMA labels "G0N26k4A" and "G0N26k4B", respectively.
Then,

(f, f1, f3)11/Ωf = 95471053234170748495487338893497 · 116 mod 1137

(f, f3, f1)11/Ωf = 95471053234170748495487338893497 · 116 mod 1137

(g, f1, f3)11/Ωg = 55763306102626444133044720757319 · 115 mod 1136

(g, f3, f1)11/Ωg = 55763306102626444133044720757319 · 115 mod 1136.

Weight (8, 8, 8): Again, let f1, f2, f3 ∈ Snew
8 (26,Q) be the modular forms with MAGMA

labels "G0N26k8A", "G0N26k8B" and "G0N26k8C", respectively. Then,

(f1, f2, f3)11/Ωf1 = −416565804121971142106192086226 · 113 mod 1132

(f1, f3, f2)11/Ωf1 = −416565804121971142106192086226 · 113 mod 1132

(f1, f2, f3)17/Ωf1 = −105741928641296179447241796669245184 · 112 mod 1131

(f1, f3, f2)17/Ωf1 = −105741928641296179447241796669245184 · 112 mod 1131.

43

Let g1, g2 ∈ Snew
8 (14,Q) be the modular forms with MAGMA labels "G0N14k8A" and

"G0N14k8B", respectively. Then,

(g1, g1, g2)11/Ωg1 = 734883105249980562570929993960 · 113 mod 1132

(g1, g2, g1)11/Ωg1 = 734883105249980562570929993960 · 113 mod 1132

(g1, g1, g2)13/Ωg1 = −83810731204340340790430184725378 · 134 mod 1333

(g1, g2, g1)13/Ωg1 = −83810731204340340790430184725378 · 134 mod 1333.

The above examples seems to suggest that the symmetry behaviour depends on the
weights of f, g, h. If we denote these weights by k, ` and m respectively, we might hazard
the guess that there is some quantity q = q(k, `,m) ∈ N such that

(f, g, h)p = (−1)q(f, h, g)p.

Upon further reflection, we notice that, in [DR14], it is explained that the quantity
`fgh,α (thus Lp(f, g, h)) is anti-symmetric when the weights are (2, 2, 2). We thus are
lead to believe, since (f, g, h)p is a linear combination of `fgh,α and `fgh,β, that both `fgh,α
and `fgh,β satisfy symmetry properties, not just (f, g, h)p. Going back to all the above
examples, and computing `fgh,α and `fgh,β, confirms this. Below are some examples with
`fgh,α and `fgh,β.

Weight (4, 6, 6): Let f1, f2,∈ Snew
6 (10,Q) and f ∈ Snew

4 (10,Q) be the modular forms
with MAGMA labels "G0N10k6A","G0N10k6B" and "G0N10k4A", respectively. Then,

`f1ff2,α = −26386965220349884527318241946803914432474 mod 1140

`f1f2f,α = −26386965220349884527318241946803914432474 mod 1140

`f1ff2,β = −75574125935415170464593652374311392122346 mod 1140

`f1f2f,β = −15338649341563693663055559656025430884525 mod 1140.

We can clearly see that `f1ff2,α = `f1f2f,α mod 1140 and we can easily check that `f1ff2,β =
`f1f2f,β mod 1131.

Weight (4, 6, 8): Let f ∈ Snew
4 (15,Q), ϕ2 ∈ Snew

6 (15,Q) and ψ2 ∈ Snew
8 (15,Q) be the

modular forms with MAGMA labels "G0N15k4B","G0N15k6B" and "G0N15k8B" respec-
tively. Then,

`fϕ2ψ2,α = −803332501949438639785077680036502041971026 · 7−1 mod 1149

`fψ2ϕ2,α = −481285385655855750657979706084676064637009 · 7−1 mod 1149

`fϕ2ψ2,β = −213868819357769200493098901765144503450454 · 7−1 mod 1149

`fψ2ϕ2,β = −656145357522354630219258225233960271342002 · 7−1 mod 1149.

We can check that `fϕ2ψ2,α = −`fψ2ϕ2,α mod 1148 and that `fϕ2ψ2,β = −`fψ2ϕ2,β mod 1142.

Weight (8, 8, 8): Fix p := 13 and let g1, g2 ∈ Snew
8 (14,Q) be the modular forms with

MAGMA labels "G0N14k8A" and "G0N14k8B", respectively. Then,

`g1g1g2,α = −79415554464330644132416479163260607504365254 mod 1340

44

`g1g2g1,α = −79415554464330644132416479163260607504365254 mod 1340

`g1g1g2,β = −18760397957165789653866436844435740458836497 mod 1340

`g1g2g1,β = −80710539635275621185173618178739136146929888 mod 1340.

We can clearly see that `g1g1g2,α = `g1g2g1,α mod 1340 and we can easily check that
`g1g1g2,β = `g1g2g1,β mod 1330.

We thus suspect the existence of some quantity q = q(k, `,m) ∈ N such that

`fgh,α = (−1)q`fhg,α, `fgh,β = (−1)q`fhg,β.

A first natural guess would be to try q := k+`+m
2

. This seems to work with all the
above examples. However, we note that we only have considered examples with even
weights so far. Indeed, when considering odd weights, we notice that q := k+`+m

2
fails, as

below.

Weight (3, 3, 4): Let χ be the Legendre symbol
(·

7

)
. Let f ∈ Snew

3 (Γ1(7),Q, χ) and g ∈
Snew

4 (Γ0(7),Q) be the modular forms with MAGMA labels “G1N7k3A” and “G0N7k4A”
respectively. Let p := 5. Then,

`ffg,α = 15605684005197 · 5−1 mod 519

`fgf,α = 27049775802072 · 5−1 mod 519

`ffg,β = −22541288651053 · 5−1 mod 519

`fgf,β = −14911894119803 · 5−1 mod 519.

And we can check that `ffg,α = `fgf,α mod 517 and that `ffg,β = `fgf,β mod 517. Since these
values are non-zero, we see that `fgh,α and `fgh,β are symmetric (and not anti-symmetric)
despite q(3, 3, 4) = 5 being odd.

We thus need to be more clever in our choice of q. By looking again at the Definition
4.2.4, we realize that the right contender for q is simply q := `+m−k

2
= 1 + t. This

agrees with all our examples, which we gather in Table 4.1, summarizing the behaviour
of (f, g, h)p. We also include additional data points, which do not appear in the above
example, in our table.

We thus have the following conjecture.

Conjecture 4.3.1. Let f, g, h be three cuspidal new forms of weights k, `, c. Let t :=
`+m−k−2

2
. We have the following relations:

(f, g, h)p = (−1)t+1(f, h, g)p,

i.e. the parity of t determines the symmetry or anti-symmetry of (f, ∗, ∗)p.

Remark 12. The difference between our first guess q = k+`+m
2

and the actual answer
1 + t = `+m−k

2
, as we will see in Theorem 4.3.2, is simply q − (1 + t) = k. Thus, the

initial erroneous guess q = k+`+m
2

will only fail when we the first modular form f has odd
weight. We will see a similar phenomenon again, in Section 4.3.2, where odd weights will
behave differently from even weights.

45

(k, `,m) (k + `+m)/2 1 + t = (`+m− k)/2 Behaviour of (f, ∗, ∗)p
(2, 2, 2) 3 1 anti-symmetric
(2, 4, 4) 5 3 anti-symmetric
(2, 6, 6) 7 5 anti-symmetric
(2, 8, 8) 9 7 anti-symmetric
(4, 4, 4) 6 2 symmetric
(4, 4, 6) 7 3 anti-symmetric
(4, 6, 6) 8 4 symmetric
(4, 6, 8) 9 5 anti-symmetric
(4, 8, 8) 10 6 symmetric
(6, 6, 6) 9 3 anti-symmetric
(6, 6, 8) 10 4 symmetric
(6, 8, 8) 11 5 anti-symmetric
(8, 8, 8) 12 4 symmetric
(3, 3, 4) 5 2 symmetric

Table 4.1: Observed behaviour of (f, g, h)p when switching the order of the second and
third variables.

4.3.1.2 Proof

In this section, we rigorously prove that both (f, ∗, ∗)p and Lp(f, ∗, ∗) satisfy symmetry
relations, depending precisely on the parity of t.

Theorem 4.3.2. Let f, g, h be three cuspidal new forms of weights k, `,m. Let t :=
`+m−k−2

2
. We have the following relations:

Lp(f, g, h) = (−1)t+1Lp(f, h, g), (4.12)

(f, g, h)p = (−1)t+1(f, h, g)p, (4.13)

i.e. the parity of t determines the symmetry or anti-symmetry of (f, ∗, ∗)p and Lp(f, ∗, ∗).

Proof. We begin the proof by setting up some notation. Let

g :=
∑
n≥1

an(g)qn; h :=
∑
n≥1

an(h)qn;

G−i :=
∑
p 6 |n

an(g)

ni
qn; H−i :=

∑
p 6 |n

an(h)

ni
qn,

so that we have G−i = d−ig[p] and H−i = d−ih[p]. Consider the sum

X :=
t∑
i=0

(−1)iG−1−t+iH−1−i.

We can easily check that

dX = d

(
t∑
i=0

(−1)iG−1−t+iH−1−i

)
= G−1−tH0 − (−1)t+1H−1−tG0.

46

Thus, G−1−tH0 − (−1)t+1H−1−tG0 is exact and is hence in the kernel of eord. Indeed, one
can readily check that for any form φ, Upn!(d(φ)) is more and more divisible by p as n
goes to infinity. So

0 = eord
(
G−1−tH0 − (−1)t+1H−1−tG0

)
= eord

(
d−1−t (g[p]

)
× h[p] − (−1)t+1g[p] × d−1−t (h[p]

))
= eord

(
d−1−tg[p] × h[p]

)
− (−1)t+1eord

(
g[p] × d−1−th[p]

)
.

(4.14)

By Lemma 2.2.2, φ[p]
1 × (V φ2) is in the kernel of the Up operator for p-adic modular

forms φ1, φ2. Thus, so is d−1−t (g[p]
)
×V (Up(h)), hence eord

(
d−1−t (g[p]

)
× V (Up(h))

)
= 0.

Therefore, as h[p] = (1− V Up)h,

eord
(
d−1−t (g[p]

)
× h[p]

)
= eord

(
d−1−t (g[p]

)
× h
)
− eord

(
d−1−t (g[p]

)
× V (Up(h))

)
= eord

(
d−1−t (g[p]

)
× h
)
.

Similarly, eord
(
g[p] × d−1−t (h[p]

))
= eord

(
g × d−1−t (h[p]

))
. Combining this with Equation

(4.14), we obtain

0 = eord
(
d−1−tg[p] × h

)
− (−1)t+1eord

(
g × d−1−th[p]

)
.

This implies that Lp(f, g, h) = (−1)t+1Lp(f, h, g), proving the first statement of the the-
orem.

We will now address the second part: Equation (4.13). Let $ be the invariant differ-
ential associated to G−1−tH0 − (−1)t+1H−1−tG0. As we have already showed that this is
exact, this implies that $ = 0 is trivial in cohomology, thus〈

ωf , ef∗(G−1−tH0 − (−1)t+1H−1−tG0)
〉

= 〈ωf , $〉 = 0,

which gives
〈ωf , ef∗(G−1−tH0)〉 = (−1)t+1 〈ωf , ef∗(H−1−tG0)〉 . (4.15)

As explained above, Up(d−1−tg[p] × V Up(h)) = 0, so d−1−tg[p] × V Up(h) has trivial slope
projections and ef∗(d−1−tg[p] × V Up(h))) = 0, so

ef∗(G−1−th) = ef∗(G−1−th−G−1−t × V Up(h)) = ef∗(G−1−tH0).

Similarly, ef∗(H−1−tg) = ef∗(H−1−tG0). Hence, Equation (4.15) gives

〈ωf , ef∗(G−1−th)〉 = (−1)t+1 〈ωf , ef∗(H−1−tg)〉 .

Remark 13. One might – rightfully – ask where the term

X =
t∑
i=0

(−1)iG−1−t+iH−1−i,

in the proof of Theorem 4.3.2 came from. Here is the heuristic reasoning behind it. We
wished to show that G−1−tH0− (−1)t+1H−1−tG0 was of the form dX (in order to then say
it was in the kernel of eord). To do that we simply formally define

X :=

∫
G−1−tH0 − (−1)t+1H−1−tG0,

47

and formally apply integration by parts in hopes of getting a cancellation to the terms
involving integrals. The integration by parts formula tells us that∫

u(x)v(y) = u(x−1)v(y) −
∫
u(x−1)v(y+1), ∀x, y ∈ Z. (4.16)

Iteratively repeating Equation (4.16) yields∫
u(x)v(y) =

r∑
i=0

(−1)iu(x−1−i)v(y+i) + (−1)r+1

∫
u(x−1−r)v(y+1+r), ∀x, y, r ∈ Z.

Applying this to our case gives us∫
H0G−1−t =

r∑
i=0

(−1)iG−1−t+iH−1−i + (−1)r+1

∫
G−t+rH−1−r, ∀r ∈ Z. (4.17)

Hence, taking r = t in Equation (4.17), we get∫ (
G−1−tH0 − (−1)t+1H−1−tG0

)
=

∫
G−1−tH0 − (−1)t+1

∫
H−1−tG0

=
t∑
i=0

(−1)iG−1−t+iH−1−i + (−1)t+1

∫
G0H−1−t − (−1)t+1

∫
H−1−tG0

=
t∑
i=0

(−1)iG−1−t+iH−1−i.

Let us now look back at the expressions for Lp(f ,g,h)(k, `,m) and (f, g, h)p in terms
of projections of p-adic modular forms over the slope 0 and slope k − 1 subspace. We
see, thanks to Equation 4.3 and Definition 4.2.4, that Lp(f ,g,h)(k, `,m) is a multiple of
`fgh,α, while (f, g, h)p is a linear combination of `fgh,α and `fgh,β. Thus, Theorem 4.3.2 is
telling us that both quantities `fgh,α and `fgh,β are symmetric or anti-symmetric in the
second and third variables – depending on the weights of f, g and h.

Note however that the quantities `fgh,α and `fgh,β are not, individually, fully symmetric
in all three variables. To make them symmetric in all three variables, we need to take
their linear combination, with the appropriate constants. Such constants are exactly the
ones in Definition 4.2.4 of (f, g, h)p, as we will see in the following section.

4.3.2 Cyclic symmetry for (f, g, h)p

We now investigate a much more interesting behaviour : the cyclic symmetry of (f, g, h)p.
At the start of the author’s investigations, he thought that (f, g, h)p was perfectly sym-
metric under any cyclic permutation of the three inputs, i.e. that (f, g, h)p = (g, h, f)p =
(h, f, g)p. All of the examples computed seemed to agree with this, except for the exam-
ples involving odd weights, which were harder to compute and were only done much later,
after the examples with even weights. Note as well, that even before computing an ex-
ample with odd weights, the author already had started suspecting that (f, g, h)p could

48

not be fully cyclically symmetric (invariant under any cyclic permutation of the three
inputs), as this would not agree with Theorem 4.3.2. This will be explained in greater
detail in Section 4.3.3, when considering the case of odd weights specifically. Indeed, it
turns out that (f, g, h)p will be perfectly cyclically symmetric precisely when the weights
are all even or in the trivial case of when the symbol vanishes.

Unlike Section 4.3.1.1, we do not present our computational evidence here, but rather
chose to present it in its own chapter, as the examples involved are longer and more
numerous. We now finally present our main theorem, proving symmetry relations for
(f, g, h)p, when permuting its inputs.

Theorem 4.3.3. Let f, g, h be three cuspidal newforms of weights k, `,m. Then (f, g, h)p
satisfies the cyclic symmetry relation

(f, g, h)p = (−1)k(g, h, f)p = (−1)m(h, f, g)p.

In particular, when the weights are all even, (f, g, h)p is symmetric when its inputs are
cyclically permuted.

Proof. Assume for simplicity that χf = χg = χh = 1. We start with the case of weights
k = ` = m = 2. In this case, the diagonal cycle ∆2,2,2 is symmetric, as can easily be
seen from Definition 3.1 in [DR14]. Recall that ωf ⊗ ωg ⊗ ωh is given by the Künneth
decomposition and is therefore made up of cup products. So by the properties of cup
products, we have ωf ⊗ ωg = −ωg ⊗ ωf and ωf ⊗ ωh = −ωh ⊗ ωf . We can thus write

AJp(∆2,2,2)(ωf ⊗ ωg ⊗ ωh) = AJp(∆2,2,2)(ωg ⊗ ωh ⊗ ωf).

For general weights k, `,m, a variation of the above holds. We will first study the
action of permuting the first two coordinates of (f, g, h)p, then the action of permuting
the second and third coordinates and finally combine them to obtain the desired result.
We make our argument explicit using the functoriality properties of the p-adic Abel Jacobi
map. Let

r1 := k − 2, r2 := `− 2, r3 := m− 2, r :=
r1 + r2 + r3

2
,

and
W := Er1 × Er2 × Er3 , W ′ := Er2 × Er1 × Er3 .

Let
s : W −→ W ′

be the map that permutes the first and second terms. Then s induces permutations on the
corresponding Chow groups and De Rham cohomology groups: we have a pushforward s∗
on CHr+2(W)0 and a dual pullback s∗,∨ on Filr+2H2r+3

dR (W)∨. The functoriality properties
of the p-adic Abel Jacobi map with respect to correspondences (see Propositions 1,2 & 4
iii) in [EZZ82]) give us the commuting diagram

CHr+2(W)0 Filr+2H2r+3
dR (W)∨

CHr+2(W ′)0 Filr+2H2r+3
dR (W ′)∨.

AJp

s∗ s∗,∨

AJp

49

Thus, AJps∗ = s∗,∨AJp. Given Z ∈ CHr+2(W)0 and some ω ∈ Filr+2H2r+3
dR (W ′), we

get
AJp(s∗Z)(ω) = (s∗,∨AJp(Z))(ω) = AJp(Z)(s∗ω).

We can now apply this to the generalized Gross-Kudla-Schoen diagonal cycle ∆k,`,m and
take ω = ωg ⊗ ωf ⊗ ωh. We see that the action of s∗ on ω is given by s∗(ωg ⊗ ωf ⊗ ωh) =
(−1)(k−1)(`−1)(ωf ⊗ ωg ⊗ ωh), by the skew symmetry of cup products (which are part
of the Künneth decomposition). Furthermore, the action of s∗ on ∆k,`,m is given by
s∗∆k,`,m = (−1)r+(r1r2)∆`,k,m. The proof of this is purely combinatorial: one needs to
expand Definition 3.3 of ∆k,`,m ∈ CHr+2(W)0 in [DR14] and permute two subsets of
{1, ..., r} of size r1 and r2 and intersection of size r−r3. Finally, r+r1r2 +(k−1)(`−1) =
(k + `−m)/2 mod 2, therefore we obtain the symmetry formula

(f, g, h)p = (−1)(k+`−m)/2(g, f, h)p.

Similarly, (f, g, h)p = (−1)(`+m−k)/2(f, h, g)p. Combining these two symmetry formulas
gives

(f, g, h)p = (−1)k(g, h, f)p.

Note that the proof of Theorem 4.3.3 provides an alternative way to prove Equation
(4.13) of Theorem 4.3.2. The proof of Theorem 4.3.3 is more conceptual and relies on the
functorial properties of the p-adic Abel Jacobi map; whereas the proof of Theorem 4.3.2
is more “hands-on” and is also simpler and more intuitive.

4.3.3 The case of odd weights

Even before establishing Theorem 4.3.3, one can use Theorem 4.3.2 to see that cyclic
symmetry for (f, g, h)p cannot be proven if we allow odd weights. On the one hand we
have a conjecture stating that we can cyclically shuffle f, g, h as we wish in (f, g, h)p. On
the other hand, we just saw in Theorem 4.3.2 that the order of f, g, h determines whether
(f, g, h)p is symmetric or anti-symmetric in the final two variables.

To be more specific, suppose that we can find modular forms f, g, h of weights k, `,m
such that t(k,`,m) := `+m−k−2

2
is odd but t(`,m,k) := m+k−`−2

2
is even. Then we would have

by Theorem 4.3.2 that (f, g, h)p = (f, h, g)p while (g, h, f)p = −(g, f, h)p. Hence, if we
believe that (f, g, h)p is invariant under cyclically permuting its three inputs then we’d
have

(f, g, h)p = (g, h, f)p = −(g, f, h)p = −(f, h, g)p = −(f, g, h)p. (4.18)

Hence, this would imply that the p-adic triple symbol (f, g, h)p is vanishing.

Note that this situation cannot happen if all the weights are even. However, if we
allow one of the weights to be odd, then we need to have precisely two odd weights
and one even weight, as the sum of the three weights must be even. So in the odd
weights case, the weights are of the form k, `,m with k even and `,m odd. But then
(`+m−k)/2, (`+k−m)/2 and (k+m−`)/2 cannot all have the same parity. Hence, one
of (f, ∗, ∗)p, (g, ∗, ∗)p, (h, ∗, ∗)p must be symmetric and another must be anti-symmetric,
in the final two variables. Thus, in the case where the weights are not all even, in order
for (f, g, h)p to satisfy cyclic symmetry, it must be trivial, as described in Equation (4.18).

50

Experimental evidence shows that this is not actually the case. Hence, when one of
the weights is odd, (f, g, h)p is not always cyclically symmetric. This, of course, is clear
from the statement of Theorem 4.3.3, once we know that (f, g, h)p is not always vanishing.
We present the counter-examples in Section 5.3.

4.4 Limitations of (f, g, h)p

The initial hope of the author was to introduce a p-adic L-function, in the usual sense
of the term, that would generalize the Garrett-Rankin triple product p-adic L-function,
and also satisfy certain symmetry properties. However, it eventually became clear that
this was likely to be impossible. Indeed, while we had success with the first two tasks,
namely generalizing the Garrett-Rankin triple product p-adic L-function and showing
that our new function satisfied symmetry properties, it seems unlikely that this new
function would be continuous.

We are not proving here that (f, g, h)p is actually discontinuous. We are only high-
lighting the fact that although it is defined as a generalization of a known triple product
p-adic L-function, there seems to be no clear reason for it to actually be continuous.

Despite (f, g, h)p probably not yielding a p-adic L-function, it still is a very interesting
object, as it is a symmetrized version of Darmon and Rotger’s Garrett-Rankin triple
product p-adic L-function. Moreover, our new symbol has a useful application which we
discuss in greater detail in Chapter 6. Essentially, it allows us to get a handle on the
Poincaré pairing 〈ωf , φ(ωf)〉. This quantity has only so far been computed when f had
weight 2. We can now potentially compute it for any f of general integer weight.

The further study of the continuity properties of the p-adic symbol (f, g, h)p is left
for future works. In particular, it would be interesting to study it alongside the triple
product p-adic L-function from [AI21], which involves non-zero slope projections.

51

Chapter 5

Examples

This chapter is dedicated to experimental calculations. Here, we present examples show-
ing how our algorithms from Chapter 3 can be used in practice. We first of all consider
modular forms of even weights: overconvergent and nearly overconvergent. Second, we
consider modular forms of odd weight with trivial and non-trivial characters.

5.1 Calculations in the overconvergent case

In this section we will concern ourselves with the case where all the modular forms
have weight 2. This is the easiest way to ensure that we are working with overconvergent
modular forms. In the next section, there will still be instances of overconvergent modular
forms coming from classical modular forms which have weight greater than 2.

Example 2. Let us consider the space of new forms Snew
2 (Q, 57) of weight 2 and level 57.

Let f, g, h be cuspidal newforms in Snew
2 (Q, 57):

f = q − 2q2 − q3 + 2q4 − 3q5 + 2q6 − 5q7 + q9 + 6q10 + q11 + ...,

g = q + q2 + q3 − q4 − 2q5 + q6 − 3q8 + q9 − 2q10 + ...,

h = q − 2q2 + q3 + 2q4 + q5 − 2q6 + 3q7 + q9 − 2q10 − 3q11 +

Let p := 5. As in Section 3.2, let fαf,p and fβf,p denote the p-stabilizations of f , at some
prime p. Then f, g, h are regular and ordinary at p. Using the algorithm described in
Section 3.2, we compute the quantities `fgh,α, `fgh,β, `ghf,α, `ghf,β, `hfg,α, `hfg,β and obtain

`fgh,α = −3774928826965787816511437758179915984738972855613348870149740387513806 mod 5100

`fgh,β = −1600120463087968696799905890349018972704454279824366881678828640068804 · 5−1 mod 599

`ghf,α = 3414089135682117556340078214096537672013164967359802729338191598002457 · 5 mod 5101

`ghf,β = 319324687965512071716318643272796126647017637487474169128482176479703 mod 5100;

`hfg,α = 3386642279338565749426053729955310360166771341172640348803607194424548 · 5−1 mod 599

`hfg,β = −1362182692510584292629393424534010351729144263363030199124032659953338 mod 5100.

and

`fhg,α = 3774928826965787816511437758179915984738972855613348870149740387513806 mod 5100

52

`fhg,β = 880679317526405930264409438811117931242490011004937901328334255303179 · 5−1 mod 599;

`gfh,α = −3414089135682117556340078214096537672013164967359802729338191598002457 · 5 mod 5101

`gfh,β = 1316444872164870993756743549790237920953950571465279247158114744839078 mod 5100

`hgf,α = −1808920468896542138602596599389737900820358470954594339263049333096423 · 5−1 mod 599

`hgf,β = −1848796736101022160118506527593042717532675210104737039492910699421662 mod 5100.

Note that we indeed have `fgh,γ = −`fhg,γ. In order to experimentally verify the symmetry
property of Equation (4.5), we will now compute the periods Ωϕ := 〈ωϕ, φ(ωϕ)〉 for ϕ in
{f, g, h} by using Kedlaya’s algorithm (see Section 6.1 for more details on how this is
done). We obtain

Ωf = 29505681199130962626561255838977599356333294679056282865324073514068 · 52 mod 5100

Ωg = −159133461381175901704339380528584168392746264473700984619726139435577 · 5 mod 5100

Ωh = 78414893708965262061304860105818868793779659587029031834898206619639 · 52 mod 5100.

Finally, putting everything together we obtain

(f, g, h)p = 5871767952506844465150908265973598858284513190743516082327198557652 · 52 mod 5100

(g, h, f)p = 94224189337260166671264507577645656581683633922954092616598438792027 · 52 mod 5100

(h, f, g)p = 328989194731033279961794928605802838532429869011399338836233448557652 · 52 mod 5100.

And we can check that all these values agree modulo 597.

Example 3. Let f, g, h ∈ Snew
2 (Q, 57) be as in the previous example, but let p := 13. We

compute

`fgh,α = −179615800858514594790935523295005 mod 1330

`fgh,β = −1173874402611247715932653980534105 · 13−1 mod 1329

`ghf,α = 1058442539336085401246122595189804 mod 1330

`ghf,β = 1136250171369817904401024814550290 mod 1330;

`hfg,α = 63496452210337112497240034316484 mod 1330

`hfg,β = 86380259995438463086995743653607 · 13−1 mod 1329.

We also obtain the following periods,

Ωf = 747883580536370784038722642576 · 132 mod 1330

Ωg = 61296861381585516104166315710382 · 13 mod 1330

Ωh = 6170002020838093658448481261149 · 132 mod 1330.

Finally, putting everything together we obtain

(f, g, h)p = 2124533192750997784031019365198 · 132 mod 1330

(g, h, f)p = 2124533192750997784031019365198 · 132 mod 1330

(h, f, g)p = 2124533192750997784031019365198 · 132 mod 1330.

And we can see that all these values agree modulo 1330.

53

Example 4. Let us consider the space of modular forms of weight 2 and level 37. Let
f, g, h be the forms given by:

f = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10 − 5q11 + ...,

g = q + q3 − 2q4 − q7 − 2q9 + 3q11 + ...,

h =
3

2
+ q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + 15q8 + 13q9 + 18q10 + 12q11 +

Note that f and g are cuspidal while h is not. Let p := 11. Using the algorithm described
in Section 3.2, we compute

`fgh,α = −12449394081731926689684650993971593311060102168078850679207955943794741307164505545339425350661814806627 mod 11100

`fgh,β = 3450771149934091507696169875302041808277366926875008578547994224891139307152592068348464449062826700804 · 11 mod 5101

`ghf,α = 49978484316398630843271189143391707270865278108792177515014589007784465613108845936562475728564036908732 mod 11100

`ghf,β = 52865352591771879840256886219429829427902355888851338575991309983859585762605123333318833341335099581821 mod 11100.

We also obtain the following periods,

Ωf = 1560425564171886174125250972396023594348431007710034539825430293654892150571238614470836697519424194957 · 11 mod 11100

Ωg = 3981102196158132743762690037937916717299478064342121837135751827457318771842317960857493978846502603687 · 11 mod 11100.

We could not compute Ωh as our method (based on Kedlaya’s algorithm) for computing
such periods requires the modular forms to be cuspidal (see Section 6.1). Finally, putting
everything together we obtain

(f, g, h)p = −472218662156453653979009197568867050229402944704980473061465688637236892629736612000590299462585425361 · 112 mod 11101

(g, h, f)p = −472218662156453653979009197568867050229402944704980473061465688637236892629736612000590299462585425361 · 112 mod 11101.

We then have
(f, g, h)p = (g, h, f)p mod 11100.

Example 5. Let now p := 13. Then f, g, h are regular and ordinary at p. Using the
algorithm described in Section 3.2, we compute `fgh,α, `fgh,β, `ghf,α, `ghf,β and obtain

`fgh,α = 24454544368317321193147788601605125567980312030360933495 mod 1350

`fgh,β = −18965396853594186613360415482474096467860639185147922257 mod 1350

`ghf,α = 11282761843825929752632895695128941757966403760955183652 mod 1350

`ghf,β = −15615470003849992531584184284566911000163963570823904538 · 13 mod 1349.

In order to experimentally verify the symmetry property of equation (4.5), we will now
compute the periods Ωϕ := 〈ωϕ, φ(ωϕ)〉 for ϕ ∈ {f, g} by using Kedlaya’s algorithm. We
obtain

Ωf = −770438160940929413133073891974625125293240143740420509 · 13 mod 1350

Ωg = −1402371697069909741021363743582055751673612471659626504 · 13 mod 1350.

Finally, putting everything together we obtain

(f, g, h)p = 40102917639870025129848982104235551826081871096329837 · 132 mod 1350

(g, h, f)p = −127264879339570040102868945443543816739033597010195242 · 132 mod 1350,

and we have (f, g, h)p = (g, h, f)p mod 1350.

54

Example 6. Let us consider the space of new forms Snew
2 (Q, 99) of weight 2 and level 99.

Let f, g, h, t be cuspidal newforms:

f = q − q2 − q4 − 4q5 − 2q7 + 3q8 + 4q10 − q11 + ...,

g = q + q2 − q4 + 4q5 − 2q7 − 3q8 + 4q10 + q11 + ...,

h = q − q2 − q4 + 2q5 + 4q7 + 3q8 − 2q10 − q11 + ...,

t = q + 2q2 + 2q4 − q5 − 2q7 − 2q10 − q11 +

Let p := 5. Then f, g, h, t are regular and ordinary at p. Using the algorithm described
in Section 3.2, we compute `fgh,α = `fgt,α = `gfh,α = `gft,α = `ght,α = `hfg,α = `hgt,α =
`tfg,α = `tgh,α = `fgh,β = `fgt,β = `gfh,β = `gft,β = `ght,β = `hfg,β = `hgt,β = `tgf,β = `tgh,β =
0 mod 545. And

`fht,α = −36161452234838835287174626710804222 · 5−1 mod 549

`htf,α = −20868694281062418936996441211004196 mod 550

`tfh,α = 18116699117222185554834264505111476 · 5−1 mod 549

`fht,β = 10629037051287997159580780647896294 mod 550

`htf,β = 12304397893788887779888991572823477 mod 550

`tfh,β = −1015367586697314958200755390530457 · 5−2 mod 548.

So we shift our attention to f, h, t. We compute

(f, h, t)p = 243594474713044585579432523826789 · 52 mod 549

(h, t, f)p = 954137210473144771450556791404914 · 52 mod 550

(t, f, h)p = −182731166743015525943242036720086 · 52 mod 550.

And we can check that all these values agree modulo 548.

5.2 Calculations in the non-overconvergent case

In the previous case, when f, g, h all had weight 2, the modular form d−1(g[p])× h, that
was being projected over fα and fβ, was overconvergent. This case was addressed in
[Lau14]. To make use of the new, more general, algorithms described in Sections 3.1.3
and 3.2, we need to consider modular forms of different weights.

Let f, g, h be modular forms of respective weights k, `,m. We are interested in com-
puting

(f, g, h)p = (−1)tt!
〈ωf , φ(ωf)〉

pk−1

(
E1(f)

E(f, g, h)
βf∗ `fgh,α +

Ẽ1(f)

Ẽ(f, g, h)
αf∗ `fgh,β

)
,

where `fgh,γ := λfγ
(
d−1−t(g[p])× h

)
and t := `+m−k−2

2
.

However, we need 0 ≤ t ≤ min{`,m} − 2 in order to guarantee that d−1−t(g[p]) × h
is nearly overconvergent. Since the subcase t = ` − 2 ensure the overconvergence of
d−1−t(g[p])× h, we want to avoid this case in this subsection.

For instance, we could take (k, `,m) = (4, 4, 4). Then, t = 1 6= ` − 2. It is harder
to check this result in weight 4. A limitation of our code is that we need the weight

55

4 to be strictly less than p − 1. In addition, our method (see Section 6.1) to compute
Ωf := 〈ωf , φ(ωf)〉, which is based on Kedlaya’s algorithm (cf. [Ked01]), only applies
when f has weight 2. So we cannot directly check that (f, g, h)p = (g, h, f)p. We will see
however, in this section, how to get around these issues. We can pick a level N so that
Snew4 (Q, N) has 4 modular forms f, g, h1, h2 and check whether or not we have

(f, g, h1)p
(f, g, h2)p

?
=

(g, h1, f)p
(g, h2, f)p

. (5.1)

Moreover, if we consider the case where a form is repeated twice, as in f = g, we then
have Ωf = Ωg, and we only need to check that (g, g, h)p/Ωg = (g, h, g)p/Ωg. In this case,
we can compute both sides of this equality.
Example 7. Take N := 26, and p = 7. Let f, g, h ∈ S4(Q, 26) be the newforms

f = q + 2q2 − q3 + 4q4 + 17q5 − 2q6 − 35q7 + 8q8 − 26q9 + 34q10 + 2q11 + ...,

g = q + 2q2 + 4q3 + 4q4 − 18q5 + 8q6 + 20q7 + 8q8 − 11q9 − 36q10 − 48q11 + ...,

h = q − 2q2 + 3q3 + 4q4 + 11q5 − 6q6 + 19q7 − 8q8 − 18q9 − 22q10 − 38q11 +

We then would like to experimentally check the symmetry in the three variables, without
having to compute the factors Ωf = 〈ωf , φ(ωf)〉.

We compute

`ggh,α = −853497491248921735765717285309989814027942 mod 750

`ggh,β = −844796013914105998910733611578948320121855 mod 750

`gfh,α = −726086389244708810173847335792542915982534 mod 750

`gfh,β = −20870274176292581685533778712737818726758 mod 750

`ghg,α = 853497491248921735765717285309989814027942 mod 750

`ghg,β = −662862438250229424238936807802026547626525 mod 750

`hgg,α = −569818423040149447329383086481457818344930 mod 750

`hgg,β = 638471100617667383586834235541410223190670 mod 750

`hgf,α = −792212837978234745972056458409084758844364 mod 750

`hgf,β = −26776706512557383282284171858607065870193 mod 750.

and obtain

(g, g, h)p/Ωg = −14066462242621113516575344633484539401 · 72 mod 750,

(g, h, f)p/Ωg = −6121015725153276828428313903632090359 mod 750,

(g, h, g)p/Ωg = −9698833490637520318356720127976874715 · 72 mod 750,

(h, g, g)p/Ωh = 13999099609221502029301977732701650652 · 72 mod 750,

(h, g, f)p/Ωh = 1784957335724921465199755297995800789 mod 750.

And we can check that,

Ωg · (g, g, h)p = Ωg · (g, h, g)p mod 743,

which means that (g, g, h)p = (g, h, g)p modulo a power of 7 potentially slightly smaller
that 43 (depending of val7(Ωg)). Similarly,

(g, g, h)p
(g, h, f)p

=
(h, g, g)p
(h, g, f)p

mod 743.

56

Let us now do an example where all the forms are different in the triple product.

Example 8. Take N := 45 and let f, g, h, h2, h3 ∈ S4(Q, 45) be the cuspidal newforms:

f = q − q2 − 7q4 − 5q5 − 24q7 + 15q8 + 5q10 − 52q11...,

g = q − 3q2 + q4 + 5q5 + 20q7 + 21q8 − 15q10 + 24q11...,

h = q + 4q2 + 8q4 + 5q5 + 6q7 + 20q10 − 32q11 + ...,

h2 = q + 5q2 + 17q4 − 5q5 − 30q7 + 45q8 − 25q10 + 50q11 + ...,

h3 = q − 5q2 + 17q4 + 5q5 − 30q7 − 45q8 − 25q10 − 50q11 +

Pick p = 17, we have a17(f) · a17(g) · a17(h) · a17(h2) · a17(h3) 6= 0. Consider the p-
adic symbols (φ1, φ2, φ3)p, for distinct φi in {f, g, h, h2, h3}, up to permutations. We
have ten potential L-values to compute. Out of these ten, and up to precision 30 (i.e.
in Z/1730Z), seven give us zero. Namely, `φ1φ2φ3,γ = 0 for γ in {α, β} and (φ1, φ2, φ3)
in {(f, g, h), (f, g, h2), (f, h, h2), (f, h2, h3), (g, h, h3), (g, h2, h3), (h, h2, h3)}. The non-zero
values are the ones involving (φ1, φ2, φ3) ∈ {(f, g, h3), (f, h, h3), (g, h, h2)}. Now, in order
to check Equation 5.1, we compute the following values:

`fgh3,α = −452987614719404990529824918211982513 mod 1730

`fgh3,β = 3024125954105030338283683239626651767 mod 1730

`fhh3,α = 2167446936326222112724151737488337903 mod 1730

`fhh3,β = −2034761566188734529496358243791947123 mod 1730

`h3fg,α = −1253203983254546721999333784617671928 mod 1730

`h3fg,β = 4076342701069946998223745573266518441 mod 1730

`h3fh,α = −2522890527148207279455366439012348422 mod 1730

`h3fh,β = 2741139254319171699307348970094495030 mod 1730.

and obtain

(f, g, h3)p/Ωf = −1023342994315815801374020643871 · 172 mod 1730,

(f, h, h3)p/Ωf = 68362151699300710278000063432 · 172 mod 1730,

(h3, f, g)p/Ωh3 = −2631698743570631185431705415466 · 172 mod 1730,

(h3, f, h)p/Ωh3 = 248547247830740599793540647737 · 172 mod 1730.

Thus,
(f, g, h3)p
(f, h, h3)p

=
(h3, f, g)p
(h3, f, h)p

mod 1725.

We will now consider weights that are not necessarily all the same. We call such cases,
case of mixed weights. Fix a level N ∈ N and consider cuspidal newforms f ∈ S2(Q, N)
and g, h ∈ S4(Q, N). Then, we can consider whether the quantities

(f, g, h)p = (−1)tt!
〈ωf , φ(ωf)〉

pk−1

(
E1(f)βf∗λf∗

α

(
d−3(g[p])× h

)
E(f, g, h)

+
Ẽ1(f)αf∗λf∗

β

(
d−3(g[p])× h

)
Ẽ(f, g, h)

)
,

(h, f, g)p = (−1)tt!
〈ωf , φ(ωf)〉

pm−1

(
E1(h)βh∗λh∗

α

(
d−1(f [p])× g

)
E(h, f, g)

+
Ẽ1(h)αh∗λh∗

β

(
d−1(f [p])× g

)
Ẽ(h, f, g)

)
,

57

(g, h, f)p = (−1)tt!
〈ωf , φ(ωf)〉

p`−1

(
E1(g)βg∗λg∗α

(
d−1(h[p])× f

)
E(g, h, f)

+
Ẽ1(g)αg∗λg∗β

(
πoc
(
d−1(h[p])× g

))
Ẽ(g, h, g)

)
.

are equal.

As explained in the beginning of Section 5.2, only the calculation of (g, h, f)p, involves
taking a nearly overconvergent projection that is not also an overconvergent projection,
since t4,4,2 = (4 + 2 − 4 − 2)/2 = 0 6= 4 − 2. We do this using the methods described in
Section 3.1.3.

Example 9. Take N := 45, and p = 17. Let f, g, h, h2, h3 ∈ S4(Q, 45) be the same as in
Example 8. Let f0 ∈ S2(Q, 45) be the newform given by

f0 = q + q2 − q4 − q5 − 3q8 − q10 + 4q11 +

We compute

(f0, f, h2)p/Ωf0 = 16513223984800935050336063815246 · 173 mod 1730,

(f, h2, h0)p/Ωf = 13539421372161396100812664727177 · 17 mod 1730,

(f0, h3, g)p/Ωf0 = −3366884595101012754561302551722 · 172 mod 1730

(h3, g, f0)p/Ωh3 = 93393936291523115360189136554 mod 1730.

Using Kedlaya’s algorithm, we compute

Ωf0 = 〈ωf0 , φ(ωf0)〉 = 73740522216959426358743952636082111 · 17 mod 1730.

Thus, we deduce that we must have

Ωf = Ωf0 ·
(f0, f, h2)p/Ωf0

(f, h2, f0)p/Ωf

= −8862546113964214628352195959100 · 173 mod 1727,

Ωh3 = Ωf0 ·
(f0, h3, g)p/Ωf0

(h3, g, f0)p/Ωh2

= −1728830956772474294735820116226 · 173 mod 1726.

Similarly for mixed weight (2, 6, 6), only (g, h, f)p involves taking a nearly overcon-
vergent projection that is not also an overconvergent projection.

Example 10. Now, take N = 57. Let f ∈ S2(Q, 57) and g, h ∈ S6(Q, 57) be the cuspidal
newforms given by

f = q − 2q2 − q3 + 2q4 − 3q5 + 2q6 − 5q7 + q9 + 6q10 + q11 + ...,

g = q − 2q2 + 9q3 − 28q4 − 98q5 − 18q6 + 240q7 + 120q8 + 81q9 + 196q10 + ...,

h = q + 11q2 + 9q3 + 89q4 + 6q5 + 99q6 − 176q7 + 627q8 + 81q9 + 66q10 +

Pick p = 11. We compute

(f, g, h)p/Ωf = −19841586742716583327697123 · 115 mod 1130,

(g, h, f)p/Ωg = 4898532676057009152301672 · 11 mod 1125,

(h, f, g)p/Ωh = 2590652948658337394871975 · 11 mod 1125.

Using Kedlaya’s algorithm, we compute

Ωf = 〈ωf , φ(ωf)〉 = 353068503250943267009292014182 · 11 mod 1130.

58

Thus, we deduce that we must have

Ωg = Ωf ·
(f, g, h)p/Ωf

(g, h, f)p)/Ωg

= 193527671316152299040913 · 115 mod 1129,

Ωh = Ωf ·
(f, g, h)p/Ωf

(h, f, g)p/Ωh

= 4441442674558133588872252 · 115 mod 1129.

We will now revisit some old examples and see how it is possible to indeed get around
the issue of not being able to directly compute the period Ωφ when the weight of the
modular form φ is not 2.

Example 11. Thanks to Example 9, we know that

Ωf = −8862546113964214628352195959100 · 173 mod 1727

and
Ωh3 = −1728830956772474294735820116226 · 173 mod 1726.

We can thus go back to Example 8 and calculate

(f, g, h3)p = 99795872486437369277096456880 · 175 mod 1730,

(h3, f, g)p = 744171283394115732347838121186112 · 175 mod 1730,

(f, h, h3)p = 164573667765677253259876978353 · 175 mod 1730,

(h3, f, h)p = −375944554148824313091742684791715 · 175 mod 1730.

And we indeed have:

(f, g, h3)p = (h3, f, g)p mod 1729,

(f, h, h3)p = (h3, f, h)p mod 1729.

We conclude this section with two longer examples involving different modular forms
of different weights.

Example 12. Take N = 21 and p = 11. Let f0 ∈ S2(Q, 21) and f, g, h ∈ S6(Q, 21) be the
cuspidal newforms given by

f0 = q − q2 + q3 − q4 − 2q5 − q6 − q7 + 3q8 + q9 + 2q10 + 4q11 + ...,

f = q + q2 − 9q3 − 31q4 − 34q5 − 9q6 − 49q7 − 63q8 + 81q9 − 34q10 − 340q11 + ...,

g = q + 5q2 + 9q3 − 7q4 + 94q5 + 45q6 − 49q7 − 195q8 + 81q9 + 470q10 + ...,

h = q + 10q2 + 9q3 + 68q4 − 106q5 + 90q6 − 49q7 + 360q8 + 81q9 − 1060q10 +

From Kedlaya’s algorithm, we have

Ωf0 = 412797842384875685536202567431940950593928402977097 · 11 mod 1150.

Consider the triple (f0, f, g). We can compute

(f0, f, g)p/Ωf0 = −2257599454326142239276759004266889152843755460 · 115 mod 1149,

(f, g, f0)p/Ωf = −2816145142524823359002534585019971120441513443 mod 1144,

(g, f0, f)p/Ωg = −1202790078682800562850336220378526707376378726 mod 1144.

59

This allows us to recover the periods:

Ωf = Ωf0 ·
(f0, f, g)p/Ωf0

(f, g, f0)p/Ωf

= −2509689183927003985676644860386486830080817519 · 116 mod 1150

Ωg = Ωf0 ·
(f0, f, g)p/Ωf0

(g, f0, f)p/Ωg

= 2597224237884861326788056615405141084095558737 · 116 mod 1150.

(5.2)

Consider now the triple (f0, f, h). We can compute

(f0, f, h)p/Ωf0 = −2847504000645971661684808020815460021295815552 · 114 mod 1150,

(f, h, f0)p/Ωf = 208861134786059864497993853997286411529878026 · 11−1 mod 1150,

(h, f0, f)p/Ωh = 150562340318535656035117305085357243695039436 mod 1150.

This allows us to recover the periods:

Ωf = Ωf0 ·
(f0, f, h)p/Ωf0

(f, h, f0)p/Ωf

= −265990518807064443259324061059582050044810885278 · 116 mod 1152

Ωh = Ωf0 ·
(f0, f, h)p/Ωf0

(h, f0, f)p/Ωh

= 351732345322848871789725510885236737451572684266 · 115 mod 1151.

(5.3)

Note that we can also check that the two values we obtained for the period Ωf from
Equations (5.2) and (5.3) math modulo 1150. We can also compute

(f, g, h)p/Ωf = −14494713415205324727148635803973443784679717 · 112 mod 1144,

(g, h, f)p/Ωg = 2422280249818398772023030459699296894387061 · 112 mod 1144,

(h, f, g)p/Ωh = 2930787596521014283263530804024042212003237 · 113 mod 1145.

This finally allows us to calculate the full values:

(f, g, h)p = 20986917589986718469194287107276286895307311 · 118 mod 1150,

(g, h, f)p = −22914560311143954782518388246573725956557586 · 118 mod 1150,

(h, f, g)p = 7861733475215692445486373857156179960213682 · 118 mod 1150.

And we can check that all these values agree modulo 1148.

Example 13. Take N = 26 and p = 11. Let f0 ∈ S2(Q, 26), f, g, h ∈ S4(Q, 26) and
f1, f2, f3 ∈ S8(Q, 26) be the cuspidal newforms given by

f0 = q − q2 + q3 + q4 − 3q5 − q6 − q7 − q8 − 2q9 + 3q10 + 6q11 + ...,

f1 = q + 8q2 − 27q3 + 64q4 − 245q5 − 216q6 − 587q7 + 512q8 − 1458q9 + ...,

f2 = q + 8q2 − 87q3 + 64q4 + 321q5 − 696q6 − 181q7 + 512q8 + 5382q9 + ...,

f3 = q − 8q2 − 39q3 + 64q4 + 385q5 + 312q6 − 293q7 − 512q8 − 666q9 + ...,

f = q + 2q2 − q3 + 4q4 + 17q5 − 2q6 − 35q7 + 8q8 − 26q9 + 34q10 + 2q11 + ...,

g = q + 2q2 + 4q3 + 4q4 − 18q5 + 8q6 + 20q7 + 8q8 − 11q9 − 36q10 − 48q11 + ...,

60

h = q − 2q2 + 3q3 + 4q4 + 11q5 − 6q6 + 19q7 − 8q8 − 18q9 − 22q10 − 38q11 +

From Kedlaya’s algorithm, we have

Ωf0 = 390581636402185053366232716528660201295552925543487 · 11 mod 1150.

Consider the triple (f0, f1, f2). We can compute

(f0, f1, f2)p/Ωf0 = −19180624100961986511153693579392799569635332 · 117 mod 1149,

(f1, f2, f0)p/Ωf1 = 14109208854192176214141915814693455702656065 · 11 mod 1143,

(f2, f0, f1)p/Ωf2 = −7793794748784781599257971674959575446350726 · 11 mod 1143.

This allows us to recover the periods:

Ωf1 = Ωf0 ·
(f0, f1, f2)p/Ωf0

(f1, f2, f0)p/Ωf1

= 8784279298205578392088869054538764345273563 · 117 mod 1149

Ωf2 = Ωf0 ·
(f0, f1, f2)p/Ωf0

(f2, f0, f1)p/Ωf2

= −14996446534128706542282744967596509831174973 · 117 mod 1149.

Now in order to recover Ωf ,Ωg,Ωh, we compute

(f, f1, f3)p/Ωf = 1075423301938684980388264911295884649834112 · 116 mod 1147,

(f1, f3, f)p/Ωf1 = −1371650302863648283749356335039702487573085 · 112 mod 1143,

(g, f1, f3)p/Ωg = 1366148345583868303072657356484364945545196 · 115 mod 1146

(f1, f3, g)p/Ωf1 = 1458224252254476116040209429849988597407090 · 112 mod 1143,

(h, f2, f2)p/Ωh = −2253859576144716738598517847715610668997956 · 116 mod 1147

(f2, f2, h)p/Ωf2 = −1179453771945534511715867212869271933099333 · 112 mod 1143.

This allows us to recover the periods:

Ωf = Ωf1 ·
(f1, f3, f)p/Ωf1

(f, f1, f3)p/Ωf

= −899774887450008918231593851176607448072958 · 113 mod 1144

Ωg = Ωf1 ·
(f1, f3, g)p/Ωf1

(g, f1, f3)p/Ωg

= 36578899966340566317653585313947952362533 · 114 mod 1145

Ωh = Ωf2 ·
(f2, f2, h)p/Ωf2

(h, f2, f2)p/Ωh

= −1778956364295561925487995272361714970219339 · 113 mod 1144.

We finally can calculate the full values:

(f, g, h)p = 479359167857389648779593478353399577891020 · 115 mod 1146,

(g, h, f)p = 1399506016598818090453046501872791514634546 · 115 mod 1146,

(h, f, g)p = 2095226804671605448791510983070380539977212 · 115 mod 1146.

And we can check that all these values agree modulo 1143.

61

By looking at all the examples given in this section, we can observe that the p-adic
valuation of the period Ωf grows with the weight of f . It would be interesting to study
these periods further. Moreover, thanks to the reciprocity result given in Theorem 4.3.3,
one could try to assign a value to a non-cuspidal modular form h by considering a balanced
triple (f, g, h) where f and g are cuspidal. We leave this for future works.

5.3 Failure of symmetry for odd weights

We present here the examples that we alluded to at the end of Section 4.3.3. They show
that we cannot have perfect symmetry when the weights are odd, as this would imply
that our p-adic symbol is vanishing – which is not consistent with our experimental
computations below.

Example 14. Let χ be the Legendre symbol
(·

11

)
. Let f0 ∈ S2(Q,Γ0(11)) and f ∈

S7(Q,Γ1(11), χ) be the cuspidal newforms given by

f0 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 + ...,

f = q + 10q3 + 64q4 + 74q5 − 629q9 − 1331q11 +

Pick p = 23. We have ap(f0), ap(f) 6= 0. From Kedlaya’s algorithm, we have

Ωf0 = 1908316926377665890962138787495804830512022265904787726295870685765 · 23 mod 2350.

Using the algorithms described in Sections 3.1 and 3.2 we compute

(f0, f, f)p/Ωf0 = 12800351837817828053684497591209612280474057617335040803146 · 236 mod 2349.

We thus can calculate the full values:

(f0, f, f)p = −4287211555949028297914812212960436193845556190314173166613 · 237 mod 2350.

In particular, (f0, f, f)p 6= 0.

Example 15. Let χ be the Legendre symbol
(·

11

)
. Let f0 ∈ S2(Q,Γ0(11)) and f ∈

S5(Q,Γ1(11), χ) be the cuspidal newforms given by

f0 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 + ...,

f = q + 7q3 + 16q4 − 49q5 − 32q9 + 121q11 +

Pick p = 23. We have ap(f0), ap(f) 6= 0. From Kedlaya’s algorithm, we have

Ωf0 = 756130671642371484124056479062727033371 · 23 mod 2330.

Using the algorithms described in Sections 3.1 and 3.2 we compute

(f0, f, f)p/Ωf0 = 10091842636221717647840670773574570 · 234 mod 2330.

We thus can calculate the full values:

(f0, f, f)p = 101939040279920611379142668467746527 · 235 mod 2330.

In particular, (f0, f, f)p 6= 0.

62

We now present a examples that doesn’t involve any characters.

Example 16. Let f ∈ S2(Q,Γ0(15)) and g, h ∈ S3(Q,Γ1(15)) be the cuspidal newforms
given by

f = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + ...,

g = q + q2 − 3q3 − 3q4 + 5q5 − 3q6 − 7q8 + 9q9 + 5q10 + ...,

h = q − q2 + 3q3 − 3q4 − 5q5 − 3q6 + 7q8 + 9q9 + 5q10 +

Pick p = 13. Note that we actually have ap(f) 6= 0 but ap(g) = ap(h) = 0 here. This
doesn’t pose any issues to our algorithms. From Kedlaya’s algorithm, we have

Ωf = 753229198219818801217712139799892222367413308961426268 · 13 mod 1350.

Using the algorithms described in Sections 3.1 and 3.2 we compute

(f, g, h)p/Ωf = −2518718285900663610678290074698083293592484983936679 mod 1347.

(f, g, h)p/Ωf = −2518718285900663610678290074698083293592484983936679 mod 1347.

We thus can calculate the full values:

(f, g, h)p = (f, g, h)p = −10351398176982815004033618592767526990755193294057502 · 13 mod 1348.

In particular, (f, g, h)p 6= 0 and is symmetric (in the 2nd and 3rd variables), which is
consistent with the fact that t2,3,3 = 1 is odd.

Example 17. Let f ∈ S2(Q,Γ0(15)) and g, h ∈ S5(Q,Γ1(15)) be the cuspidal newforms
given by

f = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + ...,

g = q + 7q2 − 9q3 + 33q4 − 25q5 − 63q6 + 119q8 + 81q9 − 175q10 + ...,

h = q − 7q2 + 9q3 + 33q4 + 25q5 − 63q6 − 119q8 + 81q9 − 175q10 +

Pick p = 17. We have ap(f), ap(g), ap(h) 6= 0. From Kedlaya’s algorithm, we have

Ωf = 218430893995748916530793080413021976042103824071467519414876 · 17 mod 1750.

Using the algorithms described in Sections 3.1 and 3.2 we compute

(f, g, h)p/Ωf = 11620386382358448368245413864619673715972587517843435318 · 174 mod 1749.

(f, h, g)p/Ωf = 11620386382358448368245413864619673715972587517843435318 · 174 mod 1749.

We thus can calculate the full values:

(f, g, h)p = (f, g, h)p = 8960308425349268584612725752076582316781113083897858380 · 175 mod 1750.

In particular, (f, g, h)p 6= 0 and is symmetric (in the 2nd and 3rd variables), which is
consistent with the fact that t2,3,3 = 3 is odd.

63

Chapter 6

Computing Poincaré pairings

The Poincaré pairing described in Section 2.3 plays an important role in number theory
and appears in many different areas of this field (see [DL21], [DLR16] and Section III.5
of [Nik11] for instance). It is somewhat mysterious as although there are many ways of
describing it theoretically, we cannot efficiently compute it algorithmically.

The main reason why we are specifically interested in the Poincaré pairing is that
it appears in Definition 4.2.4 of our p-adic triple symbol (f, g, h)p, which is at the heart
of this thesis. Moreover, in order to demonstrate that our implementation of our new
algorithms from Chapter 3 functions properly, we would like to compute (f, g, h)p, (g, h, f)p
and (h, f, g)p, and check that these quantities are all equal (up to a sign, in the case of
odd weight, as in Theorem 4.3.3).

Using the algorithms of Sections 3.1.3 and 3.2, we can compute the quantities `fgh,α
and `fgh,β appearing in Definition 4.2.4. Furthermore, E1(f), E(f, g, h), Ẽ1(f), Ẽ(f, g, h) all
have a closed form given in Equation (4.1). Lastly, αf∗ , βf∗ can be easily computed as
roots of a Hecke polynomial (see Equation 3.14). Thus the only remaining factor in
Equation (4.10) that is non-trivial to calculate is the period Ωf := 〈ωf , φ(ωf)〉.

In Section 5.2, we have explained how one can get around the issue of computing the
period Ωf and still show that our new algorithms from Chapter 3 work properly. We
have thus so far avoided the need to explicitly compute the Poincaré pairing 〈ωf , φ(ωf)〉.
In this Chapter however, we go back to the question of computing Poincaré pairings and
try to address it using a new approach.

In Section 2.3, we saw that there were no known ways to efficiently compute a general
Poincaré pairing 〈ω, η〉. But we are actually only interested in Poincaré pairings of the
form 〈ωf , φ(ωf)〉, which do appear in the literature and are not solely restricted to our p-
adic triple symbol formulas. This makes the problem of computing these pairings slightly
more contained.

6.1 The case of weight 2

In the case where f is a newform (with rational coefficients) of weight 2, the above problem
has already been considered in Section 4 of [DL21], where the authors used the following
trick to easily calculate Ωf . The method relies on Kedlaya’s algorithm (cf. [Ked01]).

64

In general, given an elliptic curve E, of conductor N , over Q, the modularity theorem
[Wil95, TW95, BCDT01] proves the existence of a surjective map π : X0(N) −→ E

defined over Q. There exists a unique such map of minimal degree, up to composing with
automorphisms of E. We call the degree of this map the modular degree of E and denote
it by mE. The modular degree can be computed using MAGMA [BCP97].

Let now E be the elliptic curve associated to f . The differential ωf =
∑

n an(f)qn dq
q

corresponds to the invariant differential ωE := dx
y of the elliptic curve E. Computing the

Poincaré pairing 〈ωf , φ(ωf)〉 now amounts to calculating 〈ωE ,Frob(ωE)〉, up to including
the modular degree mE of E:

〈ωf , φ(ωf)〉 = mE 〈ωE ,Frob(ωE)〉 . (6.1)

The reason behind this is that the correspondence between ωf and ωE is not perfect, and
the modular degree mE of E is needed as a correction factor.

Let M =

[
M11 M12

M21 M22

]
be the matrix representing the action of Frobenius, up to

precision pm, on the differentials ωE = dx
y and ηE := xdx

y . Then,

〈ωE ,MωE〉 = 〈ωE ,M11ωE +M21ηE〉 = M21.

Hence, the period Ωf is simply given by

Ωf = mEM21 mod pm.

Finally, the matrix M can be efficiently computed via Kedlaya’s algorithm. This hence
gives us an efficient way to compute the pairing 〈ωf , φ(ωf)〉 when f is a newform of weight
2 with rational coefficients.

6.2 The case of general weights

In the case where f has weight strictly greater than 2, we cannot use the above trick
anymore. Moreover, calculating a Poincaré pairing directly by using the definition given
in Equation (2.16) does not seem feasible in our case. We will thus avoid this direct
approach and instead we resort to a workaround by exploiting the symmetry of (f, g, h)p.

Indeed, given a modular form f of weight k and level N , we will exploit the symmetry
discussed in Theorem 4.3.3 together with the method described in Section 6.1 allowing
us to compute pairings 〈ωϕ, φ(ωϕ)〉 for ϕ of weight 2.

Start by picking an eigenform ϕ with rational coefficients of weight 2 and level N .
Let g be any modular form of weight ` and level N such that the triple of modular forms
(f, g, ϕ) is balanced. Note that if k is greater than 2, then one needs to have ` = k in
order for (f, g, ϕ) to be balanced. Note that there is some freedom in the choice of ϕ and
g, and that in most cases, there will be many valid options for ϕ and g. In particular,
one can take for example g := f . Next, we compute the quantities:

(ϕ, f, g)p, (f, g, ϕ)p/Ωf .

Note that computing (ϕ, f, g)p involves computing Ωϕ, which is can be done by simply
following the method described in Section 6.1, as ϕ has weight 2. Moreover, computing

65

(f, g, ϕ)p/Ωf doesn’t involve any Poincaré pairings, as we have divided out by the period
Ωf . Finally, we obtain:

Ωf =
(ϕ, f, g)p

(f, g, ϕ)p/Ωf
.

The method described above will not always work on the first try, as the p-adic triple
symbol (f, g, ϕ)p might happen to vanish. But one can hope that by trying all the valid
combinations of ϕ and g, one will be able to recover the period Ωf .

In the case where the above method doesn’t work, one can still proceed further, as
follows, in order to compute the Poincaré pairing Ωf := 〈ωf , φ(ωf)〉 mod pm, for a modular
form f of weight k > 2, level N , and a precision level m ∈ N.

(1) Start by picking a new modular form f0 of weight k0 > 2 and level N . Then, we
apply the above method to obtain Ωf0 .

If this step fails, we start over with a different form f0. Now that we have a modular form
f0 of weight k0 and known period Ωf0 , we can proceed in a similar way to the method
described earlier in Section 6.2 to recover Ωf . In the following, the form f0 will play the
role that ϕ played above.

(2) Pick a modular form g of any weight ` such that the triple (f, f0, g) is balanced, and
check if (f, g, f0)p/Ωf is non-zero (modulo pm).

If (f, g, f0)p/Ωf = 0 mod pm, then we can pick a new form g of weight `, ensuring (f, f0, g)

remains balanced, and repeat Step 2. Since k0 6= 2, we have a much greater freedom in
picking g while still ensuring that the triple (f, f0, g) is balanced. If we still are unlucky
after a few tries (if (f, g, f0)p/Ωf keeps vanishing), we can decide to go back to Step 1,
pick a new form f0 and start over from there.

(3) Compute (f0, f, g)p and return

(f0, f, g)p
(f, g, f0)p/Ωf

= Ωf mod pm. (6.2)

Remark 14. In the case where both numerator and denominator, on the left hand side
of Equation (6.2), are divisible by a power of p, there might be a slight loss of precision.
However, one can easily keep track of that in practice.

We note that a particular feature of this algorithm is that there does not seem to be
any obstruction for it working with non cuspidal modular forms. Finally, for concrete and
detailed examples of the use of this algorithm, see Examples 9, 10, 12 and 13 in Section
5.2.

66

Chapter 7

The challenges and uses of
experimental algorithms

In this chapter, we will discuss some aspects at the interface of experimental compu-
tations and theoretical research in number theory. We will particularly describe how
computations can often help lead and correct theoretical discoveries.

Such matters are not conventionally included in a thesis – and even less in a research
paper. However, as the nature of the author’s work is heavily algorithmic and computa-
tional, it makes sense to comment on and highlight certain aspects of his experimental
research, especially the parts which had a noticeable impact on the examples presented
in this work.

Having gone through most of this thesis by now, the reader has the advantage of
being presented with a polished and coherent version of the theory as well as a selec-
tion of supporting examples. However, this clear presentation hides the many mistakes
that have occurred throughout the elaboration of this thesis. We will present here an
error that occurred in the theoretical calculations done by the author, and how it was
caught by experimental calculations, thus highlighting the importance of experimental
computations.

Looking back at the discussion surrounding Equation (4.9), we put ourselves back in
the context where the author was seeking the appropriate multiple of AJp(∆)(ωf⊗ωg⊗ωh)

to ensure the resulting quantity was symmetric1. To find the right coefficients, the plan
was to simply compute various multiples of AJp(∆)(ωf ⊗ ωg ⊗ ωh) and see which ones
were indeed symmetric. Let us call this unknown coefficient ι = ιk,`,m, where k, `,m are
the weights of f, g, h respectively. The author suspected that ι = ιk,`,m was one of the
terms appearing in (−1)t

t!
E(f,g,h)
E0(f)E1(f) , so there were only finitely many contenders for ι to test.

The problem with this initial approach is that it was not possible to directly compute
AJp(∆)(ωf ⊗ωg⊗ωh) when the weight of f was greater than 2. Indeed, the formula given
by Theorem 4.2.3, involved the calculation of the period Ωf := 〈ωf , φ(ωf)〉, which can
only be done by direct methods in weight 2 (as explained in Chapter 6).

1Keep in mind that this work was done much before the development of the proof of Theorem 4.3.3.
Indeed, Theorem 4.3.3 came after the accumulation of experimental evidence suggesting its veracity.

67

Nonetheless, the weight 2 case did reveal valuable information as it allowed the author
to see that ι2,2,2 = 1, ruling out the factors E0(f), E1(f), E(f, g, h). The author was thus
left with only one factor to check: (−1)t/t!. At this stage, the author decided to ignore
the factor (−1)t, as in the case of even weights, it would no make any difference, and in
the case of odd weight, the author was starting to suspect that perfect symmetry did not
hold, so the issue was moot2. The author was now trying to address the potential factor
1/t!, in the even weight case.

The problem is that this factor cancels out if all the forms have the same weights,
so experimental evidence involving k = ` = m would not be conclusive. So, one would
need to take for example (k, `,m) = (4, 6, 8) in order to check whether the factor 1/t! is
needed for the symmetry relation to hold. However, remember that we can only compute
Ωφ if φ has weight 2. So all our computations so far (many of which involved different
weights that were not just 2) did not indicate the need to add 1/t! because this potential
factor was merged with the unknown period Ωφ. To truly see that we need to add 1/t!,
the author needed to conduct an experiment involving many modular forms, of weights
(2, w1, w1), (2, w2, w2) and (w1, w2, w2), for w1 6= w2, as is done below in Examples 18 and
19.

In order to establish whether or not the factor 1/t! is needed in Definition 4.2.4 of
(f, g, h)p, we need to compute an extensive example involving many modular forms. We
set up the following notation

AJ◦p(∆)(ωφ1 ⊗ ωφ2 ⊗ ωφ3) := AJp(∆)(ωφ1 ⊗ ωφ2 ⊗ ωφ3)/Ωφ1 .

We are essentially trying to find out if the constants ιk,`,m, ι`,m,k, ιm,k,` are 1 or not, in
order for

Ωf

ιk,`,m
AJ◦p(∆)(ωf⊗ωg⊗ωh) =

Ωg

ι`,m,k
AJ◦p(∆)(ωg⊗ωh⊗ωf) =

Ωh

ιm,k,`
AJ◦p(∆)(ωh⊗ωf⊗ωg) (7.1)

to hold. And while we cannot compute any of ιk,`,m, ι`,m,k, ιm,k,` individually, we can
nonetheless compute some of their ratios, as in Equations (7.4) and (7.5), which will be
enough for our purposes. The examples below make this clear.

Before presenting the computational examples that allowed the author to discover ι, we
pause to reflect on what we expect to happen. Having read Chapter 4, and being aware of
Theorem 4.3.3, we know that in the set up of Equation (7.1), the factors ιk,`,m, ι`,m,k, ιm,k,`
all must be 1. Indeed, they all should be 1 in the absence of any mistakes. The examples
below tell the story of how the author, while looking for a potential missing factor ι,
realized that no missing factor was needed, but discovered instead that all his formulas
were off by a factor of t! due to a typo that was made at the start of his investigations
on his thesis research topic. Indeed, the author had mistakenly forgot the factor t! both
in Lemma 4.2.2 and Theorem 4.2.3. This mistaken was likely due to the fact that the
author initially started working with forms of weight 2 (where t = 2) and when he moved
onto higher weight forms, he carried over some of his formulas without modifying them
appropriately.

2In hindsight, we now know that there still is a symmetry relation in the odd weight case, as described
in Theorem 4.3.3, just not the perfect symmetry relation that the author was initially looking for.

68

Example 18. Take N = 45 and p = 11. Let f0 ∈ S2(Q, 45), f1, f4 ∈ S4(Q, 45), g1 ∈ S6(Q, 45)

and h2, h3, h5, h7 ∈ S8(Q, 45) be the cuspidal newforms given by

f0 = q + q2 − q4 − q5 − 3q8 − q10 + 4q11 + ...,

f1 = q − q2 − 7q4 − 5q5 − 24q7 + 15q8 + 5q10 − 52q11 + ...,

f4 = q + 5q2 + 17q4 − 5q5 − 30q7 + 45q8 − 25q10 + 50q11 + ...,

g1 = q + 2q2 − 28q4 + 25q5 − 132q7 − 120q8 + 50q10 − 472q11 + ...,

h2 = q − 5q2 − 103q4 + 125q5 + 930q7 + 1155q8 − 625q10 − 8450q11 + ...,

h3 = q + 10q2 − 28q4 + 125q5 − 1170q7 − 1560q8 + 1250q10 + 2650q11 + ...,

h5 = q + 13q2 + 41q4 + 125q5 + 1380q7 − 1131q8 + 1625q10 + 3304q11 + ...,

h7 = q + 22q2 + 356q4 + 125q5 − 420q7 + 5016q8 + 2750q10 + 2944q11 +

From Kedlaya’s algorithm, we have

Ωf0 = 75179727856617009001000006809957594750248291769451 · 11 mod 1150.

Consider the triples (f0, f1, f4), (f0, h3, h5), (f0, h3, h7) and (f0, h2, h5). We can compute

AJ◦p(∆)(ωf0 ⊗ ωf1 ⊗ ωf4) = 45388181573533709018757213276839454745620940075 · 113 mod 1150,

AJ◦p(∆)(ωf1 ⊗ ωf4 ⊗ ωf0) = −21289803841847354291667137268730473574207814305 · 11 mod 1150

AJ◦p(∆)(ωf0 ⊗ ωh3 ⊗ ωh5) = −7883744584978609376024635670484433363661836 · 117 mod 1150,

AJ◦p(∆)(ωh3 ⊗ ωh5 ⊗ ωf0) = −5971483489878265375200019376174870707005790 · 11 mod 1150

AJ◦p(∆)(ωf0 ⊗ ωh3 ⊗ ωh7) = −1563388105990929898228309680112155681136958 · 116 mod 1148,

AJ◦p(∆)(ωh3 ⊗ ωh7 ⊗ ωf0) = 951609632478608725696821363017914560917530 mod 1148

AJ◦p(∆)(ωf0 ⊗ ωh2 ⊗ ωh5) = 6144847115415841661115184373628383161074035 · 117 mod 1150,

AJ◦p(∆)(ωh2 ⊗ ωh5 ⊗ ωf0) = 23909428463197686164468906797722706561621936 · 11 mod 1150.

This allows us to recover the periods (up to some ratio of ι’s):

Ωf1 ·
ι2,4,4
ι4,4,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωf1 ⊗ ωf4)

AJ◦p(∆)(ωf1 ⊗ ωf4 ⊗ ωf0)

= −236086757614732508852481319504036268095331917865 · 112 mod 1148

Ωh3 ·
ι2,8,8
ι8,8,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωh3 ⊗ ωh5)

AJ◦p(∆)(ωh3 ⊗ ωh5 ⊗ ωf0)
(7.2)

= 8085352394103372492209119758164662491031019 · 116 mod 1148

Ωh3 ·
ι2,8,8
ι8,8,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωh3 ⊗ ωh7)

AJ◦p(∆)(ωh3 ⊗ ωh7 ⊗ ωf0)
(7.3)

= 1580737069057258426883368506537741442262760 · 116 mod 1147

Ωh2 ·
ι2,8,8
ι8,8,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωh2 ⊗ ωh5)

AJ◦p(∆)(ωh2 ⊗ ωh5 ⊗ ωf0)

= −13128944487668525963364745889232157275775528 · 116 mod 1148.

Note that the values of Ωh3 at (7.2) and (7.3) agree modulo 1144.

Consider now the triples (f1, g1, h2) and (f1, g1, h3). We can compute

AJ◦p(∆)(ωf1 ⊗ ωg1 ⊗ ωh2) = −16385429971934052493894348074276020562519981 · 115 mod 1150,

AJ◦p(∆)(ωh2 ⊗ ωf1 ⊗ ωg1) = 20169725681001505412372580117718650758563247 · 11 mod 1150

AJ◦p(∆)(ωf1 ⊗ ωg1 ⊗ ωh3) = −18654060703224527449855303334476367028551545 · 115 mod 1150,

AJ◦p(∆)(ωh3 ⊗ ωf1 ⊗ ωg1) = −21420916386748394556607704598255082490950756 · 11 mod 1150.

69

Now, Equation (7.1) allow us to write:

ι4,6,8
ι8,4,6

=
Ωf1

Ωh2

·
AJ◦p(∆)(ωf1 ⊗ ωg1 ⊗ ωh2)

AJ◦p(∆)(ωh2 ⊗ ωf1 ⊗ ωg1)

ι4,6,8
ι8,4,6

=
Ωf1

Ωh3

·
AJ◦p(∆)(ωf1 ⊗ ωg1 ⊗ ωh3)

AJ◦p(∆)(ωh3 ⊗ ωf1 ⊗ ωg1)
.

We thus finally obtain:

ι4,6,8
ι8,4,6

· ι2,4,4
ι4,4,2

· ι8,8,2
ι2,8,8

=
Ωf1 ·

ι2,4,4
ι4,4,2

Ωh2 ·
ι2,8,8
ι8,8,2

·
AJ◦p(∆)(ωf1 ⊗ ωg1 ⊗ ωh2)

AJ◦p(∆)(ωh2 ⊗ ωf1 ⊗ ωg1)

= 15 mod 1138

ι4,6,8
ι8,4,6

· ι2,4,4
ι4,4,2

· ι8,8,2
ι2,8,8

=
Ωf1 ·

ι2,4,4
ι4,4,2

Ωh3 ·
ι2,8,8
ι8,8,2

·
AJ◦p(∆)(ωf1 ⊗ ωg1 ⊗ ωh3)

AJ◦p(∆)(ωh3 ⊗ ωf1 ⊗ ωg1)

= 15 mod 1139.

(7.4)

Meanwhile, we can easily check that

t4,6,8!

t8,4,6!
· t2,4,4!

t4,4,2!
· t8,8,2!

t2,8,8!
=

4! · 2! · 0!

0! · 0! · 6!
= 1/15.

Therefore, we conclude that we need to take ιk,`,m := 1/tk,`,m! in Equation (7.1) and in the
definition of (f, g, h)p.

This makes sense, since we know that the author had mistakenly forgot to include the
factor of t! in Lemma 4.2.2 and Theorem 4.2.3, at the start of his research. Thankfully,
it was possible to notice this mistake through Example 18, while the author was looking
for other potential missing factors. Hence, thanks to this example, the author both
realized that a term was missing in his initial formula, and gained confidence that no
more coefficients would be needed in the definition of (f, g, h)p.

It is only after concluding that the correct definition for (f, g, h)p was simply

(f, g, h)p := AJp(∆)(ωf ⊗ ωg ⊗ ωh)

that the author started investigating AJp(∆)(ωf ⊗ωg ⊗ωh) much more theoretically thus
obtaining a proof for the desired symmetry result of Theorem 4.3.3 .

We now present one last example, in the same spirit as the previous one, that the au-
thor conducted as part of his investigation into potential missing factors in the definition
of (f, g, h)p. In it, we obtain the same conclusion as the previous example.

Example 19. Take N = 42 and p = 11. Let f0 ∈ S2(Q, 42), f1 ∈ S4(Q, 42), g1, g2, g3, g4, g5 ∈
S6(Q, 42) and h1, h2, h3, h5 ∈ S8(Q, 42) be the cuspidal newforms given by

f0 = q + q2 − q3 + q4 − 2q5 − q6 − q7 + q8 + q9 − 2q10 − 4q11 + ...,

f1 = q + 2q2 + 3q3 + 4q4 + 2q5 + 6q6 − 7q7 + 8q8 + 9q9 + 4q10 − 8q11 + ...,

g1 = q + 4q2 + 9q3 + 16q4 + 24q5 + 36q6 + 49q7 + 64q8 + 81q9 + 96q10 + 66q11 + ...,

g2 = q + 4q2 − 9q3 + 16q4 + 76q5 − 36q6 − 49q7 + 64q8 + 81q9 + 304q10 + 650q11 + ...,

g3 = q − 4q2 + 9q3 + 16q4 + 26q5 − 36q6 − 49q7 − 64q8 + 81q9 − 104q10 + 664q11 + ...,

70

g4 = q − 4q2 + 9q3 + 16q4 − 72q5 − 36q6 + 49q7 − 64q8 + 81q9 + 288q10 − 414q11 + ...,

g5 = q − 4q2 − 9q3 + 16q4 + 44q5 + 36q6 − 49q7 − 64q8 + 81q9 − 176q10 − 470q11 + ...,

h1 = q + 8q2 + 27q3 + 64q4 + 470q5 + 216q6 − 343q7 + 512q8 + 729q9 + 3760q10 − 7268q11 + ...,

h2 = q + 8q2 − 27q3 + 64q4 + 30q5 − 216q6 + 343q7 + 512q8 + 729q9 + 240q10 + 1788q11 + ...,

h3 = q − 8q2 + 27q3 + 64q4 − 122q5 − 216 ∗6 −343q7 − 512q8 + 729q9 + 976q10 − 1012q11 + ...,

h5 = q − 8q2 − 27q3 + 64q4 − 18q5 + 216q6 + 343q7 − 512q8 + 729q9 + 144q10 + 8172q11 +

From Kedlaya’s algorithm, we have

Ωf0 = −9034816949231077110517190719398315080197 · 11 mod 1140.

Consider, separatly, the triples (f0, g1, g4), (f0, g2, g5), (f0, h1, h3) and (f0, h2, h5). We can
compute

AJ◦p(∆)(ωf0 ⊗ ωg1 ⊗ ωg4) = 124680751736764040985935710225618155 · 114 mod 1138,

AJ◦p(∆)(ωg1 ⊗ ωg4 ⊗ ωf0) = −90251945472047978442198750499291743 · 112 mod 1136

AJ◦p(∆)(ωf0 ⊗ ωg2 ⊗ ωg5) = 4893054032653957200508369319131857 · 115 mod 1139,

AJ◦p(∆)(ωg2 ⊗ ωg5 ⊗ ωf0) = −88739138351321452201019987918972165 · 11 mod 1135

AJ◦p(∆)(ωf0 ⊗ ωh1 ⊗ ωh3) = −448616575576795257229893182060057 · 116 mod 1138,

AJ◦p(∆)(ωh3 ⊗ ωf0 ⊗ ωh1) = −749258580675796749294172830560666 mod 1132

AJ◦p(∆)(ωh1 ⊗ ωh3 ⊗ ωf0) = −784236221488648317736471307372074 · 11−1 mod 1131,

AJ◦p(∆)(ωf0 ⊗ ωh2 ⊗ ωh5) = −346976135951247227955068362173850 · 117 mod 1139,

AJ◦p(∆)(ωh2 ⊗ ωh5 ⊗ ωf0) = −534235525560566914862894096664534 mod 1132.

This allows us to recover the periods:

Ωg1 ·
ι2,6,6
ι6,6,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωg1 ⊗ ωg4)

AJ◦p(∆)(ωg1 ⊗ ωg4 ⊗ ωf0)

= 60403396819152049794060226976373568 · 113 mod 1135

Ωg2 ·
ι2,6,6
ι6,6,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωg2 ⊗ ωg5)

AJ◦p(∆)(ωg2 ⊗ ωg5 ⊗ ωf0)

= 90276456136094165467670278222486928 · 115 mod 1137

Ωh3 ·
ι2,8,8
ι8,8,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωh1 ⊗ ωh3)

AJ◦p(∆)(ωh3 ⊗ ωh1 ⊗ ωf0)

= −526787756063977460369560891853684 · 117 mod 1133

Ωh1 ·
ι2,8,8
ι8,8,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωh1 ⊗ ωh3)

AJ◦p(∆)(ωh1 ⊗ ωh3 ⊗ ωf0)

= −610255982304186836307627128142605 · 118 mod 1134

Ωh2 ·
ι2,8,8
ι8,8,2

= Ωf0 ·
AJ◦p(∆)(ωf0 ⊗ ωh2 ⊗ ωh5)

AJ◦p(∆)(ωh2 ⊗ ωh5 ⊗ ωf0)

= −694718239558038254512803761442819 · 118 mod 1134.

Consider now the triples (h1, g2, g3), (h2, g1, g3) and (g2, f1, h3). We can compute

AJ◦p(∆)(ωh1 ⊗ ωg2 ⊗ ωg3) = 57493837858304225712854784630527 · 11 mod 1132,

71

AJ◦p(∆)(ωg2 ⊗ ωg3 ⊗ ωh1) = 92193884923190499661919396988798 · 114 mod 1135

AJ◦p(∆)(ωh2 ⊗ ωg1 ⊗ ωg3) = −22045884096649360799249926867730 mod 1131,

AJ◦p(∆)(ωg1 ⊗ ωg3 ⊗ ωh2) = −92143610104545663337356032428792 · 115 mod 1136

AJ◦p(∆)(ωg2 ⊗ ωf1 ⊗ ωh3) = −1456642105829712076099530118300 · 112 mod 1134,

AJ◦p(∆)(ωh3 ⊗ ωg2 ⊗ ωf1) = −317820065254750439639290920823053 mod 1132.

Now, Equation (7.1) allow us to write:

ι8,6,6
ι6,6,8

=
Ωh1

Ωg2

·
AJ◦p(∆)(ωh1 ⊗ ωg2 ⊗ ωg3)

AJ◦p(∆)(ωg2 ⊗ ωg3 ⊗ ωh1)

ι8,6,6
ι6,6,8

=
Ωh2

Ωg1

·
AJ◦p(∆)(ωh2 ⊗ ωg1 ⊗ ωg3)

AJ◦p(∆)(ωg1 ⊗ ωg3 ⊗ ωh2)

ι6,4,8
ι8,6,4

=
Ωg2

Ωh3

·
AJ◦p(∆)(ωg2 ⊗ ωf1 ⊗ ωh3)

AJ◦p(∆)(ωh3 ⊗ ωg2 ⊗ ωf1)
.

This allows us to finally obtain:

ι8,6,6
ι6,6,8

· ι2,8,8
ι8,8,2

· ι6,6,2
ι2,6,6

=
Ωh1 ·

ι2,8,8
ι8,8,2

Ωg2 ·
ι2,6,6
ι6,6,2

·
AJ◦p(∆)(ωh1 ⊗ ωg2 ⊗ ωg3)

AJ◦p(∆)(ωg2 ⊗ ωg3 ⊗ ωh1)

= 5−1 mod 1129

ι8,6,6
ι6,6,8

· ι2,8,8
ι8,8,2

· ι6,6,2
ι2,6,6

=
Ωh2 ·

ι2,8,8
ι8,8,2

Ωg1 ·
ι2,6,6
ι6,6,2

·
AJ◦p(∆)(ωh2 ⊗ ωg1 ⊗ ωg3)

AJ◦p(∆)(ωg1 ⊗ ωg3 ⊗ ωh2)

= 5−1 mod 1130

ι6,4,8
ι8,6,4

· ι2,6,6
ι6,6,2

· ι8,8,2
ι2,8,8

=
Ωg2 ·

ι2,6,6
ι6,6,2

Ωh3 ·
ι2,8,8
ι8,8,2

·
AJ◦p(∆)(ωg2 ⊗ ωf1 ⊗ ωh3)

AJ◦p(∆)(ωh3 ⊗ ωg2 ⊗ ωf1)

= 15 mod 1131.

(7.5)

Meanwhile, we can easily check that

t8,6,6!

t6,6,8!
· t2,8,8!

t8,8,2!
· t6,6,2!

t2,6,6!
=

1! · 6! · 0!

3! · 0! · 4!
= 5,

t6,4,8!

t8,6,4!
· t2,6,6!

t6,6,2!
· t8,8,2!

t2,8,8!
=

2! · 4! · 0!

0! · 0! · 6!
= 1/15.

As expected, and as we have seen in Example 18, we need to take ιk,`,m := 1/tk,`,m! in
Equation (7.1) and in the definition of (f, g, h)p. This is consistent with Definition 4.2.4,
given in Section 4.2, where we can see the factor t! appearing in the formula of (f, g, h)p.

72

Bibliography

[AI21] Fabrizio Andreatta and Adrian Iovita. Triple product p-adic l-functions as-
sociated to finite slope p-adic families of modular forms. Duke Mathematical
Journal, 170(9):1989–2083, 2021.

[Bak08] Matthew Baker. p-adic Geometry: Lectures from the 2007 Arizona Winter
School, volume 45. American Mathematical Soc., 2008.

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On
the modularity of elliptic curves over Q: wild 3-adic exercises. Journal of the
American Mathematical Society, 14(4):843–939, 2001.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[Bes00] Amnon Besser. A generalization of coleman’s p-adic integration theory. In-
ventiones mathematicae, 142:397–434, 2000.

[Bos09] Siegfried Bosch. Half a century of rigid analytic spaces. Pure and Applied
Mathematics Quarterly, 5(4):1435–1467, 2009.

[Bos14] Siegfried Bosch. Lectures on formal and rigid geometry, volume 2105.
Springer, 2014.

[Cal13] Frank Calegari. Congruences between modular forms. Arizona Winter School,
pages 1–37, 2013.

[CGJ95] Robert F Coleman, Fernando Q Gouvêa, and Naomi Jochnowitz. E2, θ, and
overconvergence. International Mathematics Research Notices, 1995(1):23–41,
1995.

[Coh75] Henri Cohen. Sums involving the values at negative integers of l-functions of
quadratic characters. Mathematische Annalen, 217:271–285, 1975.

[Col89] Robert F Coleman. Reciprocity laws on curves. Compositio Mathematica,
72(2):205–235, 1989.

[Col94] Robert F Coleman. A p-adic shimura isomorphism and p-adic periods of
modular forms. Contemporary Mathematics, 165:21–21, 1994.

[Col95] Robert F Coleman. Classical and overconvergent modular forms. Journal de
théorie des nombres de Bordeaux, 7(1):333–365, 1995.

73

[Col97] Robert F Coleman. p-adic Banach spaces and families of modular forms.
Inventiones mathematicae, 127(3):417–479, 1997.

[Dar04] Henri Darmon. Rational points on modular elliptic curves. Number 101.
American Mathematical Soc., 2004.

[DI95] Fred Diamond and John Im. Modular forms and modular curves. In Seminar
on Fermat’s Last Theorem, Providence, RI, pages 39–133, 1995.

[DL21] Henri Darmon and Alan Lauder. Stark points on elliptic curves via Perrin-
Riou’s philosophy. Annales mathématiques du Québec, pages 1–18, 2021.

[DLR16] Henri Darmon, Alan Lauder, and Victor Rotger. Gross–stark units and p-
adic iterated integrals attached to modular forms of weight one. Annales
mathématiques du Québec, 40:325–354, 2016.

[DR73] Pierre Deligne and Michael Rapoport. Les schémas de modules de courbes el-
liptiques. In Modular Functions of One Variable II: Proceedings International
Summer School University of Antwerp, RUCA July 17–August 3, 1972, pages
143–316. Springer, 1973.

[DR14] Henri Darmon and Victor Rotger. Diagonal cycles and Euler systems I: A
p-adic Gross-Zagier formula. Ann. Sci. Éc. Norm. Supér.(4), 47(4):779–832,
2014.

[DS05] Fred Diamond and Jerry Michael Shurman. A first course in modular forms,
volume 228. Springer, 2005.

[EZZ82] Fouad El Zein and Steven Zucker. Extendability of normal functions associ-
ated to algebraic cycles. Topics in transcendental algebraic geometry, Ann.
Math. Stud, 106:269–288, 1982.

[Ful13] William Fulton. Intersection theory, volume 2. Springer Science & Business
Media, 2013.

[Gar87] Paul B Garrett. Decomposition of eisenstein series: Rankin triple products.
Annals of Mathematics, 125(2):209–235, 1987.

[Gha22] Wissam Ghantous. A symmetric p-adic symbol for triples of modular forms.
arXiv preprint arXiv:2211.14111, 2022.

[GM92] F Gouvêa and Barry Mazur. Families of modular eigenforms. Mathematics
of computation, 58(198):793–805, 1992.

[GM95] Fernando Q Gouvêa and Barry Mazur. Searching for p-adic eigenfunctions.
Mathematical Research Letters, 2(5):515–536, 1995.

[Gor02] Eyal Goren. Lectures on Hilbert modular varieties and modular forms. Num-
ber 14. American Mathematical Soc., 2002.

[Gou88] Fernando Quadros Gouvêa. Arithmetic of p-adic modular forms. 1304, 1988.

74

[Hid86] Haruzo Hida. Iwasawa modules attached to congruences of cusp forms. In
Annales scientifiques de l’École Normale Supérieure, volume 19, pages 231–
273, 1986.

[Hid93] Haruzo Hida. Elementary theory of L-functions and Eisenstein series. Num-
ber 26. Cambridge University Press, 1993.

[Kat73] Nicholas M Katz. p-adic properties of modular schemes and modular forms.
In Modular functions of one variable III, pages 69–190. Springer, 1973.

[Kat75] Nicholas M Katz. Higher congruences between modular forms. Annals of
Mathematics, 101(2):332–367, 1975.

[Ked01] Kiran S Kedlaya. Counting points on hyperelliptic curves using monsky-
washnitzer cohomology. arXiv preprint math/0105031, 2001.

[KM85] Nicholas M Katz and Barry Mazur. Arithmetic moduli of elliptic curves.
Number 108. Princeton University Press, 1985.

[Kün23] Hermann Künneth. Über die bettischen zahlen einer produktmannigfaltigkeit.
Mathematische Annalen, 90(1-2):65–85, 1923.

[Kün24] Hermann Künneth. Ueber die torsionszahlen von produktmannigfaltigkeiten.
Mathematische Annalen, 91(1-2):125–134, 1924.

[Lan01] Serge Lang. Introduction to modular forms, volume 222. Springer Science &
Business Media, 2001.

[Lan08] Dominic Lanphier. Combinatorics of maass–shimura operators. Journal of
Number Theory, 128(8):2467–2487, 2008.

[Lau11] Alan GB Lauder. Computations with classical and p-adic modular forms.
LMS Journal of Computation and Mathematics, 14:214–231, 2011.

[Lau14] Alan Lauder. Efficient computation of Rankin p-adic L-functions. In Compu-
tations with modular forms, pages 181–200. Springer, 2014.

[Loe07] David Loeffler. Spectral expansions of overconvergent modular functions. In-
ternational Mathematics Research Notices, 2007(9):rnm050–rnm050, 2007.

[Loe18] David Loeffler. A note on p-adic Rankin–Selberg L-functions. Canadian Math-
ematical Bulletin, 61(3):608–621, 2018.

[LSZ20] David Loeffler, Christopher Skinner, and Sarah Livia Zerbes. Syntomic regula-
tors of asai–flach classes. In Development of Iwasawa Theory—the Centennial
of K. Iwasawa’s Birth, pages 595–638. Mathematical Society of Japan, 2020.

[LZ16] David Loeffler and Sarah Livia Zerbes. Rankin–eisenstein classes in coleman
families. Research in the Mathematical Sciences, 3(1):29, 2016.

[Nek00] Jan Nekovár. p-adic abel-jacobi maps and p-adic heights. The Arithmetic
and Geometry of Algebraic Cycles (Banff, Canada, 1998), CRM Proc. Lect.
Notes, 24:367–379, 2000.

75

[Nik11] Maximilian Niklas. Rigid syntomic regulators and the p-adic L-function of a
modular form. PhD thesis, 2011.

[Pil13] Vincent Pilloni. Formes modulaires surconvergentes. Ann. Inst. Fourier
(Grenoble), 63:219–239, 2013.

[PSR87] Ilya Piatetski-Shapiro and Stephen Rallis. Rankin triple l functions. Compo-
sitio Mathematica, 64(1):31–115, 1987.

[Sch90] Anthony J Scholl. Motives for modular forms. Inventiones mathematicae,
100(1):419–430, 1990.

[Ser62] Jean-Pierre Serre. Endomorphismes complètement continus des espaces de
Banach p-adiques. Publications Mathématiques de l’IHÉS, 12:69–85, 1962.

[Ser73] Jean-Pierre Serre. Formes modulaires et fonctions zêta p-adiques. In Modular
functions of one variable III, pages 191–268. Springer, 1973.

[Sil94] Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves,
volume 151. Springer Science & Business Media, 1994.

[Smi61] Henry John Stephen Smith. On systems of linear indeterminate equations
and congruences. Philosophical transactions of the royal society of london,
(151):293–326, 1861.

[TW95] Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain hecke
algebras. Annals of Mathematics, 141(3):553–572, 1995.

[Urb14] Eric Urban. Nearly overconvergent modular forms. In Iwasawa theory 2012,
pages 401–441. Springer, 2014.

[Wan98] Daqing Wan. Dimension variation of classical and p-adic modular forms.
Inventiones mathematicae, 133(2):449–463, 1998.

[Wil95] Andrew Wiles. Modular elliptic curves and fermat’s last theorem. Annals of
mathematics, 141(3):443–551, 1995.

[Zag94] Don Zagier. Modular forms and differential operators. Proceedings Mathe-
matical Sciences, 104:57–75, 1994.

76

	Introduction
	A simple example
	Structure of the thesis

	Preliminaries
	Modular forms
	Classical Modular forms
	Overconvergent and p-adic modular forms
	Nearly overconvergent modular forms

	The Up operator
	Up acting on classical modular forms
	Up acting on p-adic modular forms
	Up acting on overconvergent modular forms
	Up acting on nearly overconvergent modular forms

	The Poincaré pairing

	Explicit algorithmic methods
	Ordinary projections
	Computing the Katz Basis and the Up operator
	Ordinary projections of overconvergent modular forms
	Ordinary projections of nearly overconvergent modular forms

	Eigenspace projections
	The projector to f
	The case of multiplicity greater than 1
	Stabilizations of Hecke eigenforms

	A p-adic symbol for triples of modular forms
	The Garrett-Rankin triple product p-adic L-function
	A new p-adic triple symbol (f,g,h)p
	Symmetry properties of (f,g,h)p
	Partial symmetry for (f,*,*)p
	Computational evidence
	Proof

	Cyclic symmetry for (f,g,h)p
	The case of odd weights

	Limitations of (f,g,h)p

	Examples
	Calculations in the overconvergent case
	Calculations in the non-overconvergent case
	Failure of symmetry for odd weights

	Computing Poincaré pairings
	The case of weight 2
	The case of general weights

	The challenges and uses of experimental algorithms
	References

